#!/usr/bin/env python3 """Generate statistics for the UTS2017_Bank dataset.""" import json import statistics as stats from collections import Counter from pathlib import Path def load_jsonl(file_path): """Load JSONL file and return list of items.""" with open(file_path, encoding="utf-8") as f: return [json.loads(line.strip()) for line in f] def text_stats(items): """Calculate text length statistics.""" word_counts = [len(item["text"].split()) for item in items] return { "avg": stats.mean(word_counts), "min": min(word_counts), "max": max(word_counts), "median": stats.median(word_counts), } def print_subset_stats(subset_name, emoji): """Print statistics for a dataset subset.""" print(f"\n{emoji} {subset_name.upper()} SUBSET") print("-" * 40) for split in ["train", "test"]: file_path = Path(f"data/{subset_name}/{split}.jsonl") items = load_jsonl(file_path) print(f"\n{split.capitalize()}: {len(items)} examples") # Text statistics text_data = text_stats(items) print(f" Words: avg={text_data['avg']:.1f}, range={text_data['min']}-{text_data['max']}") # Subset-specific stats if subset_name == "classification": labels = Counter(item["label"] for item in items) print(f" Top labels: {', '.join(f'{k}({v})' for k, v in labels.most_common(3))}") elif subset_name == "sentiment": sentiments = Counter(item["sentiment"] for item in items) print(f" Sentiments: {', '.join(f'{k}({v})' for k, v in sentiments.most_common())}") elif subset_name == "aspect_sentiment": multi_aspect = sum(1 for item in items if len(item["aspects"]) > 1) print(f" Multi-aspect: {multi_aspect}/{len(items)} examples") def main(): """Generate and display dataset statistics.""" print("šŸ“Š UTS2017_Bank Dataset Statistics") print("=" * 50) # Overall stats train_items = load_jsonl("data/classification/train.jsonl") test_items = load_jsonl("data/classification/test.jsonl") total = len(train_items) + len(test_items) print(f"\nšŸ“ˆ OVERALL: {total} examples ({len(train_items)} train, {len(test_items)} test)") # Subset statistics print_subset_stats("classification", "šŸ·ļø") print_subset_stats("sentiment", "😊") print_subset_stats("aspect_sentiment", "šŸŽÆ") # Available configurations print("\nšŸ’” USAGE:") print(" load_dataset('undertheseanlp/UTS2017_Bank', 'classification')") print(" load_dataset('undertheseanlp/UTS2017_Bank', 'sentiment')") print(" load_dataset('undertheseanlp/UTS2017_Bank', 'aspect_sentiment')") if __name__ == "__main__": main()