File size: 8,300 Bytes
a090310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e057f
 
 
a090310
 
 
 
 
 
 
 
e3e057f
 
a090310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e057f
 
 
 
a090310
e3e057f
 
a090310
 
 
 
 
e3e057f
a090310
e3e057f
a090310
e3e057f
a090310
 
 
e3e057f
 
 
 
 
 
a090310
 
 
 
 
 
e3e057f
a090310
 
 
 
 
 
 
 
 
 
 
 
 
e3e057f
a090310
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# /// script
# requires-python = ">=3.9"
# dependencies = [
#     "semhash",
#     "datasets",
#     "huggingface-hub",
#     "hf-transfer",
# ]
# ///

"""
Semantic deduplication for Hugging Face datasets using SemHash.

This script removes duplicate or near-duplicate text samples from datasets based on
semantic similarity, helping to clean training data and prevent train/test leakage.

SemHash is CPU-optimized and uses Model2Vec embeddings that are 500x faster on CPU
than traditional transformers. No GPU required!

Example usage:
    # Basic deduplication
    uv run semantic-dedupe.py username/dataset text username/dataset-deduped

    # With custom threshold and max samples for testing
    uv run semantic-dedupe.py username/dataset text username/dataset-deduped \\
        --threshold 0.85 --max-samples 1000

    # Using HF Jobs (CPU is sufficient)
    hf jobs uv run --flavor cpu-4x-xlarge \\
        -e HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \\
        https://huggingface.co/datasets/uv-scripts/deduplication/raw/main/semantic-dedupe.py \\
        username/dataset text username/dataset-deduped
"""

import argparse
import os
import sys
from datetime import datetime
from typing import Optional

from datasets import Dataset, load_dataset
from huggingface_hub import DatasetCard, login
from semhash import SemHash

# Enable fast transfers
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"


def parse_args():
    parser = argparse.ArgumentParser(
        description="Deduplicate a dataset using semantic similarity",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Examples:
  # Basic usage
  uv run semantic-dedupe.py imdb text imdb-deduped

  # With options
  uv run semantic-dedupe.py squad question squad-deduped --threshold 0.85 --method duplicates

  # Test with small sample
  uv run semantic-dedupe.py large-dataset text test-dedup --max-samples 100
        """,
    )
    
    parser.add_argument("dataset", help="Input dataset ID (e.g., 'imdb' or 'username/dataset')")
    parser.add_argument("column", help="Text column to deduplicate on")
    parser.add_argument("output_repo", help="Output dataset repository name")
    
    parser.add_argument(
        "--split",
        default="train",
        help="Dataset split to process (default: train)",
    )
    parser.add_argument(
        "--method",
        choices=["duplicates", "outliers", "representatives"],
        default="duplicates",
        help="Deduplication method (default: duplicates)",
    )
    parser.add_argument(
        "--threshold",
        type=float,
        default=0.9,
        help="Similarity threshold for duplicates (default: 0.9)",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=64,
        help="Batch size for processing (default: 64)",
    )
    parser.add_argument(
        "--max-samples",
        type=int,
        help="Maximum number of samples to process (for testing)",
    )
    parser.add_argument(
        "--private",
        action="store_true",
        help="Create private dataset repository",
    )
    parser.add_argument(
        "--hf-token",
        default=os.environ.get("HF_TOKEN"),
        help="Hugging Face API token (defaults to HF_TOKEN env var)",
    )
    
    return parser.parse_args()


def create_dataset_card(
    original_dataset: str,
    column: str,
    method: str,
    threshold: float,
    original_size: int,
    deduped_size: int,
) -> str:
    """Create a dataset card with deduplication information."""
    reduction_pct = ((original_size - deduped_size) / original_size) * 100
    
    return f"""---
viewer: false
tags:
- deduplication
- semhash
- uv-script
---

# Deduplicated {original_dataset}

This dataset is a deduplicated version of [{original_dataset}](https://huggingface.co/datasets/{original_dataset}).

## Deduplication Details

- **Method**: {method}
- **Column**: `{column}`
- **Threshold**: {threshold}
- **Original size**: {original_size:,} samples
- **Deduplicated size**: {deduped_size:,} samples
- **Reduction**: {reduction_pct:.1f}%
- **Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}

## Method Description

{get_method_description(method)}

## How to Use

```python
from datasets import load_dataset

# Load the deduplicated dataset
dataset = load_dataset("{os.environ.get('HF_USERNAME', 'username')}/{os.path.basename(original_dataset)}-deduped")
```

## Reproduce

This dataset was created using the [uv-scripts/deduplication](https://huggingface.co/datasets/uv-scripts/deduplication) tool:

```bash
uv run https://huggingface.co/datasets/uv-scripts/deduplication/raw/main/semantic-dedupe.py \\
    {original_dataset} {column} {os.path.basename(original_dataset)}-deduped \\
    --method {method} --threshold {threshold}
```

Generated with 🤖 UV Scripts
"""


def get_method_description(method: str) -> str:
    """Get description for deduplication method."""
    descriptions = {
        "duplicates": "Removes semantic duplicates by finding samples with high similarity scores above the threshold.",
        "outliers": "Removes outlier samples that have low similarity to other samples in the dataset.",
        "representatives": "Keeps only representative samples, removing both duplicates and outliers.",
    }
    return descriptions.get(method, "Unknown method")


def main():
    args = parse_args()
    
    # Authenticate
    if args.hf_token:
        login(args.hf_token)
    else:
        print("Warning: No HF token provided. Using cached credentials or anonymous mode.")
    
    # Load dataset
    print(f"Loading dataset: {args.dataset}")
    dataset = load_dataset(args.dataset, split=args.split)
    
    # Apply max samples if specified
    if args.max_samples:
        dataset = dataset.select(range(min(args.max_samples, len(dataset))))
        print(f"Limited to {len(dataset)} samples for testing")
    
    original_size = len(dataset)
    
    # Check if column exists
    if args.column not in dataset.column_names:
        print(f"Error: Column '{args.column}' not found in dataset")
        print(f"Available columns: {', '.join(dataset.column_names)}")
        sys.exit(1)
    
    # Convert dataset to records (preserves all columns)
    print("Converting dataset to records...")
    records = [dict(row) for row in dataset]
    
    # Initialize SemHash
    print("Initializing SemHash (CPU-optimized)...")
    semhash = SemHash.from_records(records=records, columns=[args.column])
    
    # Perform deduplication
    print(f"Performing {args.method} deduplication on '{args.column}' column...")
    
    if args.method == "duplicates":
        result = semhash.self_deduplicate(threshold=args.threshold)
    elif args.method == "outliers":
        result = semhash.self_filter_outliers()
    elif args.method == "representatives":
        result = semhash.self_find_representative()
    else:
        raise ValueError(f"Unknown method: {args.method}")
    
    # Get deduplicated records (all columns preserved)
    deduplicated_records = result.selected
    
    # Convert back to HF Dataset
    result_dataset = Dataset.from_list(deduplicated_records)
    deduped_size = len(result_dataset)
    
    # Print statistics
    print(f"\nDeduplication complete!")
    print(f"Original size: {original_size:,}")
    print(f"Deduplicated size: {deduped_size:,}")
    print(f"Removed: {original_size - deduped_size:,} ({((original_size - deduped_size) / original_size) * 100:.1f}%)")
    print("\nNote: SemHash processes ~20,000 sentences/second on CPU")
    
    # Create dataset card
    card = create_dataset_card(
        args.dataset,
        args.column,
        args.method,
        args.threshold,
        original_size,
        deduped_size,
    )
    
    # Push to hub
    print(f"\nPushing to hub: {args.output_repo}")
    result_dataset.push_to_hub(
        args.output_repo,
        private=args.private,
        commit_message=f"Deduplicated using {args.method} method",
    )
    
    # Create and push dataset card
    dataset_card = DatasetCard(card)
    dataset_card.push_to_hub(args.output_repo)
    
    print(f"✅ Dataset successfully pushed to: https://huggingface.co/datasets/{args.output_repo}")


if __name__ == "__main__":
    main()