# /// script
# requires-python = ">=3.11"
# dependencies = [
# "datasets",
# "huggingface-hub[hf_transfer]",
# "pillow",
# "vllm",
# "tqdm",
# "toolz",
# "torch", # Added for CUDA check
# ]
#
# ///
"""
Convert document images to markdown using Nanonets-OCR-s with vLLM.
This script processes images through the Nanonets-OCR-s model to extract
text and structure as markdown, ideal for document understanding tasks.
Features:
- LaTeX equation recognition
- Table extraction and formatting
- Document structure preservation
- Signature and watermark detection
"""
import argparse
import base64
import io
import logging
import os
import sys
from typing import Any, Dict, List, Union
import torch
from datasets import load_dataset
from huggingface_hub import login
from PIL import Image
from toolz import partition_all
from tqdm.auto import tqdm
from vllm import LLM, SamplingParams
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def check_cuda_availability():
"""Check if CUDA is available and exit if not."""
if not torch.cuda.is_available():
logger.error("CUDA is not available. This script requires a GPU.")
logger.error("Please run on a machine with a CUDA-capable GPU.")
sys.exit(1)
else:
logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
def make_ocr_message(
image: Union[Image.Image, Dict[str, Any], str],
prompt: str = "Extract the text from the above document as if you were reading it naturally. Return the tables in html format. Return the equations in LaTeX representation. If there is an image in the document and image caption is not present, add a small description of the image inside the
tag; otherwise, add the image caption inside
. Watermarks should be wrapped in brackets. Ex: OFFICIAL COPY. Page numbers should be wrapped in brackets. Ex: 14 or 9/22. Prefer using ☐ and ☑ for check boxes.",
) -> List[Dict]:
"""Create chat message for OCR processing."""
# Convert to PIL Image if needed
if isinstance(image, Image.Image):
pil_img = image
elif isinstance(image, dict) and "bytes" in image:
pil_img = Image.open(io.BytesIO(image["bytes"]))
elif isinstance(image, str):
pil_img = Image.open(image)
else:
raise ValueError(f"Unsupported image type: {type(image)}")
# Convert to base64 data URI
buf = io.BytesIO()
pil_img.save(buf, format="PNG")
data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"
# Return message in vLLM format
return [
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": data_uri}},
{"type": "text", "text": prompt},
],
}
]
def main(
input_dataset: str,
output_dataset: str,
image_column: str = "image",
batch_size: int = 32,
model: str = "nanonets/Nanonets-OCR-s",
max_model_len: int = 8192,
max_tokens: int = 4096,
gpu_memory_utilization: float = 0.8,
hf_token: str = None,
split: str = "train",
max_samples: int = None,
private: bool = False,
):
"""Process images from HF dataset through OCR model."""
# Check CUDA availability first
check_cuda_availability()
# Enable HF_TRANSFER for faster downloads
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
# Login to HF if token provided
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
# Load dataset
logger.info(f"Loading dataset: {input_dataset}")
dataset = load_dataset(input_dataset, split=split)
# Validate image column
if image_column not in dataset.column_names:
raise ValueError(
f"Column '{image_column}' not found. Available: {dataset.column_names}"
)
# Limit samples if requested
if max_samples:
dataset = dataset.select(range(min(max_samples, len(dataset))))
logger.info(f"Limited to {len(dataset)} samples")
# Initialize vLLM
logger.info(f"Initializing vLLM with model: {model}")
llm = LLM(
model=model,
trust_remote_code=True,
max_model_len=max_model_len,
gpu_memory_utilization=gpu_memory_utilization,
limit_mm_per_prompt={"image": 1},
)
sampling_params = SamplingParams(
temperature=0.0, # Deterministic for OCR
max_tokens=max_tokens,
)
# Process images in batches
all_markdown = []
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
# Process in batches to avoid memory issues
for batch_indices in tqdm(
partition_all(batch_size, range(len(dataset))),
total=(len(dataset) + batch_size - 1) // batch_size,
desc="OCR processing",
):
batch_indices = list(batch_indices)
batch_images = [dataset[i][image_column] for i in batch_indices]
try:
# Create messages for batch
batch_messages = [make_ocr_message(img) for img in batch_images]
# Process with vLLM
outputs = llm.chat(batch_messages, sampling_params)
# Extract markdown from outputs
for output in outputs:
markdown_text = output.outputs[0].text.strip()
all_markdown.append(markdown_text)
except Exception as e:
logger.error(f"Error processing batch: {e}")
# Add error placeholders for failed batch
all_markdown.extend(["[OCR FAILED]"] * len(batch_images))
# Add markdown column to dataset
logger.info("Adding markdown column to dataset")
dataset = dataset.add_column("markdown", all_markdown)
# Push to hub
logger.info(f"Pushing to {output_dataset}")
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
logger.info("✅ OCR conversion complete!")
logger.info(
f"Dataset available at: https://huggingface.co/datasets/{output_dataset}"
)
if __name__ == "__main__":
# Show example usage if no arguments
if len(sys.argv) == 1:
print("=" * 80)
print("Nanonets OCR to Markdown Converter")
print("=" * 80)
print("\nThis script converts document images to structured markdown using")
print("the Nanonets-OCR-s model with vLLM acceleration.")
print("\nFeatures:")
print("- LaTeX equation recognition")
print("- Table extraction and formatting")
print("- Document structure preservation")
print("- Signature and watermark detection")
print("\nExample usage:")
print("\n1. Basic OCR conversion:")
print(" uv run nanonets-ocr.py document-images markdown-docs")
print("\n2. With custom settings:")
print(" uv run nanonets-ocr.py scanned-pdfs extracted-text \\")
print(" --image-column page \\")
print(" --batch-size 16 \\")
print(" --gpu-memory-utilization 0.8")
print("\n3. Process a subset for testing:")
print(" uv run nanonets-ocr.py large-dataset test-output --max-samples 10")
print("\n4. Running on HF Jobs:")
print(" hfjobs run \\")
print(" --flavor l4x1 \\")
print(" --secret HF_TOKEN=... \\")
print(
" uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \\"
)
print(" your-document-dataset \\")
print(" your-markdown-output")
print("\n" + "=" * 80)
print("\nFor full help, run: uv run nanonets-ocr.py --help")
sys.exit(0)
parser = argparse.ArgumentParser(
description="OCR images to markdown using Nanonets-OCR-s",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Basic usage
uv run nanonets-ocr.py my-images-dataset ocr-results
# With specific image column
uv run nanonets-ocr.py documents extracted-text --image-column scan
# Process subset for testing
uv run nanonets-ocr.py large-dataset test-output --max-samples 100
""",
)
parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
parser.add_argument(
"--image-column",
default="image",
help="Column containing images (default: image)",
)
parser.add_argument(
"--batch-size",
type=int,
default=32,
help="Batch size for processing (default: 32)",
)
parser.add_argument(
"--model",
default="nanonets/Nanonets-OCR-s",
help="Model to use (default: nanonets/Nanonets-OCR-s)",
)
parser.add_argument(
"--max-model-len",
type=int,
default=8192,
help="Maximum model context length (default: 8192)",
)
parser.add_argument(
"--max-tokens",
type=int,
default=4096,
help="Maximum tokens to generate (default: 4096)",
)
parser.add_argument(
"--gpu-memory-utilization",
type=float,
default=0.8,
help="GPU memory utilization (default: 0.8)",
)
parser.add_argument("--hf-token", help="Hugging Face API token")
parser.add_argument(
"--split", default="train", help="Dataset split to use (default: train)"
)
parser.add_argument(
"--max-samples",
type=int,
help="Maximum number of samples to process (for testing)",
)
parser.add_argument(
"--private", action="store_true", help="Make output dataset private"
)
args = parser.parse_args()
main(
input_dataset=args.input_dataset,
output_dataset=args.output_dataset,
image_column=args.image_column,
batch_size=args.batch_size,
model=args.model,
max_model_len=args.max_model_len,
max_tokens=args.max_tokens,
gpu_memory_utilization=args.gpu_memory_utilization,
hf_token=args.hf_token,
split=args.split,
max_samples=args.max_samples,
private=args.private,
)