File size: 9,307 Bytes
ce61544 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "datasets",
# "flashinfer-python",
# "httpx",
# "huggingface-hub[hf_transfer]",
# "setuptools",
# "toolz",
# "torch",
# "transformers",
# "vllm",
# ]
#
# [[tool.uv.index]]
# url = "https://flashinfer.ai/whl/cu126/torch2.6"
#
# [[tool.uv.index]]
# url = "https://wheels.vllm.ai/nightly"
# ///
"""
Batch text classification using vLLM for efficient GPU inference.
This script loads a dataset from Hugging Face Hub, performs classification using
a BERT-style model via vLLM, and saves the results back to the Hub with predicted
labels and confidence scores.
Example usage:
# Local execution
uv run classify-dataset.py \\
davanstrien/ModernBERT-base-is-new-arxiv-dataset \\
username/input-dataset \\
username/output-dataset \\
--inference-column text \\
--batch-size 10000
# HF Jobs execution (see script output for full command)
hfjobs run --flavor l4x1 ...
"""
import argparse
import logging
import os
import sys
from typing import Optional
import httpx
import torch
import torch.nn.functional as F
import vllm
from datasets import load_dataset
from huggingface_hub import hf_hub_url, login
from toolz import concat, keymap, partition_all
from tqdm.auto import tqdm
from vllm import LLM
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def check_gpu_availability():
"""Check if CUDA is available and log GPU information."""
if not torch.cuda.is_available():
logger.error("CUDA is not available. This script requires a GPU.")
logger.error("Please run on a machine with NVIDIA GPU or use HF Jobs with GPU flavor.")
sys.exit(1)
gpu_name = torch.cuda.get_device_name(0)
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
logger.info(f"GPU detected: {gpu_name} with {gpu_memory:.1f} GB memory")
logger.info(f"vLLM version: {vllm.__version__}")
def get_model_id2label(hub_model_id: str) -> Optional[dict[int, str]]:
"""Extract label mapping from model's config.json on Hugging Face Hub."""
try:
response = httpx.get(
hf_hub_url(hub_model_id, filename="config.json"),
follow_redirects=True
)
if response.status_code != 200:
logger.warning(f"Could not fetch config.json for {hub_model_id}")
return None
data = response.json()
id2label = data.get("id2label")
if id2label is None:
logger.info("No id2label mapping found in config.json")
return None
# Convert string keys to integers
label_map = keymap(int, id2label)
logger.info(f"Found label mapping: {label_map}")
return label_map
except Exception as e:
logger.warning(f"Failed to parse config.json: {e}")
return None
def get_top_label(output, label_map: Optional[dict[int, str]] = None):
"""
Extract the top predicted label and confidence score from vLLM output.
Args:
output: vLLM ClassificationRequestOutput
label_map: Optional mapping from label indices to label names
Returns:
Tuple of (label, confidence_score)
"""
logits = torch.tensor(output.outputs.probs)
probs = F.softmax(logits, dim=0)
top_idx = torch.argmax(probs).item()
top_prob = probs[top_idx].item()
# Use label name if mapping available, otherwise use index
label = label_map.get(top_idx, str(top_idx)) if label_map else str(top_idx)
return label, top_prob
def main(
hub_model_id: str,
src_dataset_hub_id: str,
output_dataset_hub_id: str,
inference_column: str = "text",
batch_size: int = 10_000,
hf_token: Optional[str] = None,
):
"""
Main classification pipeline.
Args:
hub_model_id: Hugging Face model ID for classification
src_dataset_hub_id: Input dataset on Hugging Face Hub
output_dataset_hub_id: Where to save results on Hugging Face Hub
inference_column: Column name containing text to classify
batch_size: Number of examples to process at once
hf_token: Hugging Face authentication token
"""
# GPU check
check_gpu_availability()
# Authentication
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
else:
logger.error("HF_TOKEN is required. Set via --hf-token or HF_TOKEN environment variable.")
sys.exit(1)
# Initialize vLLM with classification task
logger.info(f"Loading model: {hub_model_id}")
llm = LLM(model=hub_model_id, task="classify")
# Get label mapping if available
id2label = get_model_id2label(hub_model_id)
# Load dataset
logger.info(f"Loading dataset: {src_dataset_hub_id}")
dataset = load_dataset(src_dataset_hub_id, split="train")
total_examples = len(dataset)
logger.info(f"Dataset loaded with {total_examples:,} examples")
# Extract text column
if inference_column not in dataset.column_names:
logger.error(f"Column '{inference_column}' not found. Available columns: {dataset.column_names}")
sys.exit(1)
prompts = dataset[inference_column]
# Process in batches
logger.info(f"Starting classification with batch size {batch_size:,}")
all_results = []
for batch in tqdm(
list(partition_all(batch_size, prompts)),
desc="Processing batches",
unit="batch"
):
batch_results = llm.classify(batch)
all_results.append(batch_results)
# Flatten results
outputs = list(concat(all_results))
# Extract labels and probabilities
logger.info("Extracting predictions...")
labels_and_probs = [get_top_label(output, id2label) for output in outputs]
# Add results to dataset
dataset = dataset.add_column("label", [label for label, _ in labels_and_probs])
dataset = dataset.add_column("prob", [prob for _, prob in labels_and_probs])
# Push to hub
logger.info(f"Pushing results to: {output_dataset_hub_id}")
dataset.push_to_hub(output_dataset_hub_id, token=HF_TOKEN)
logger.info("✅ Classification complete!")
if __name__ == "__main__":
if len(sys.argv) > 1:
parser = argparse.ArgumentParser(
description="Classify text data using vLLM and save results to Hugging Face Hub",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Basic usage
uv run classify-dataset.py model/name input-dataset output-dataset
# With custom column and batch size
uv run classify-dataset.py model/name input-dataset output-dataset \\
--inference-column prompt \\
--batch-size 50000
# Using environment variable for token
HF_TOKEN=hf_xxx uv run classify-dataset.py model/name input-dataset output-dataset
"""
)
parser.add_argument(
"hub_model_id",
help="Hugging Face model ID for classification (e.g., bert-base-uncased)"
)
parser.add_argument(
"src_dataset_hub_id",
help="Input dataset on Hugging Face Hub (e.g., username/dataset-name)"
)
parser.add_argument(
"output_dataset_hub_id",
help="Output dataset name on Hugging Face Hub"
)
parser.add_argument(
"--inference-column",
type=str,
default="text",
help="Column containing text to classify (default: text)"
)
parser.add_argument(
"--batch-size",
type=int,
default=10_000,
help="Batch size for inference (default: 10,000)"
)
parser.add_argument(
"--hf-token",
type=str,
help="Hugging Face token (can also use HF_TOKEN env var)"
)
args = parser.parse_args()
main(
hub_model_id=args.hub_model_id,
src_dataset_hub_id=args.src_dataset_hub_id,
output_dataset_hub_id=args.output_dataset_hub_id,
inference_column=args.inference_column,
batch_size=args.batch_size,
hf_token=args.hf_token,
)
else:
# Show HF Jobs example when run without arguments
print("""
vLLM Classification Script
=========================
This script requires arguments. For usage information:
uv run classify-dataset.py --help
Example HF Jobs command:
hfjobs run \\
--flavor l4x1 \\
--secret HF_TOKEN=\$(python -c "from huggingface_hub import HfFolder; print(HfFolder.get_token())") \\
vllm/vllm-openai:latest \\
/bin/bash -c '
uv run https://huggingface.co/datasets/uv-scripts/vllm/resolve/main/classify-dataset.py \\
davanstrien/ModernBERT-base-is-new-arxiv-dataset \\
username/input-dataset \\
username/output-dataset \\
--inference-column text \\
--batch-size 100000
' \\
--project vllm-classify \\
--name my-classification-job
""") |