--- viewer: false tags: [uv-script, vllm, gpu, inference] --- # vLLM Inference Scripts Ready-to-run UV scripts for GPU-accelerated inference using [vLLM](https://github.com/vllm-project/vllm). These scripts use [UV's inline script metadata](https://docs.astral.sh/uv/guides/scripts/) to automatically manage dependencies - just run with `uv run` and everything installs automatically! ## 📋 Available Scripts ### classify-dataset.py Batch text classification using BERT-style encoder models (e.g., BERT, RoBERTa, DeBERTa, ModernBERT) with vLLM's optimized inference engine. **Note**: This script is specifically for encoder-only classification models, not generative LLMs. **Features:** - 🚀 High-throughput batch processing - 🏷️ Automatic label mapping from model config - 📊 Confidence scores for predictions - 🤗 Direct integration with Hugging Face Hub **Usage:** ```bash # Local execution (requires GPU) uv run classify-dataset.py \ davanstrien/ModernBERT-base-is-new-arxiv-dataset \ username/input-dataset \ username/output-dataset \ --inference-column text \ --batch-size 10000 ``` **HF Jobs execution:** ```bash hf jobs uv run \ --flavor l4x1 \ --image vllm/vllm-openai \ https://huggingface.co/datasets/uv-scripts/vllm/resolve/main/classify-dataset.py \ davanstrien/ModernBERT-base-is-new-arxiv-dataset \ username/input-dataset \ username/output-dataset \ --inference-column text \ --batch-size 100000 ``` ### generate-responses.py Generate responses for prompts using generative LLMs (e.g., Llama, Qwen, Mistral) with vLLM's high-performance inference engine. **Features:** - 💬 Automatic chat template application - 📝 Support for both chat messages and plain text prompts - 🔀 Multi-GPU tensor parallelism support - 📏 Smart filtering for prompts exceeding context length - 📊 Comprehensive dataset cards with generation metadata - ⚡ HF Transfer enabled for fast model downloads - 🎛️ Full control over sampling parameters - 🎯 Sample limiting with `--max-samples` for testing **Usage:** ```bash # With chat-formatted messages (default) uv run generate-responses.py \ username/input-dataset \ username/output-dataset \ --messages-column messages \ --max-tokens 1024 # With plain text prompts (NEW!) uv run generate-responses.py \ username/input-dataset \ username/output-dataset \ --prompt-column question \ --max-tokens 1024 \ --max-samples 100 # With custom model and parameters uv run generate-responses.py \ username/input-dataset \ username/output-dataset \ --model-id meta-llama/Llama-3.1-8B-Instruct \ --prompt-column text \ --temperature 0.9 \ --top-p 0.95 \ --max-model-len 8192 ``` **HF Jobs execution (multi-GPU):** ```bash hf jobs uv run \ --flavor l4x4 \ --image vllm/vllm-openai \ -e UV_PRERELEASE=if-necessary \ -s HF_TOKEN=hf_*** \ https://huggingface.co/datasets/uv-scripts/vllm/raw/main/generate-responses.py \ davanstrien/cards_with_prompts \ davanstrien/test-generated-responses \ --model-id Qwen/Qwen3-30B-A3B-Instruct-2507 \ --gpu-memory-utilization 0.9 \ --max-tokens 600 \ --max-model-len 8000 ``` ### Multi-GPU Tensor Parallelism - Auto-detects available GPUs by default - Use `--tensor-parallel-size` to manually specify - Required for models larger than single GPU memory (e.g., 30B+ models) ### Handling Long Contexts The generate-responses.py script includes smart prompt filtering: - **Default behavior**: Skips prompts exceeding max_model_len - **Use `--max-model-len`**: Limit context to reduce memory usage - **Use `--no-skip-long-prompts`**: Fail on long prompts instead of skipping - Skipped prompts receive empty responses and are logged ## 📚 About vLLM vLLM is a high-throughput inference engine optimized for: - Fast model serving with PagedAttention - Efficient batch processing - Support for various model architectures - Seamless integration with Hugging Face models ## 🔧 Technical Details ### UV Script Benefits - **Zero setup**: Dependencies install automatically on first run - **Reproducible**: Locked dependencies ensure consistent behavior - **Self-contained**: Everything needed is in the script file - **Direct execution**: Run from local files or URLs ### Dependencies Scripts use UV's inline metadata for automatic dependency management: ```python # /// script # requires-python = ">=3.10" # dependencies = [ # "datasets", # "flashinfer-python", # "huggingface-hub[hf_transfer]", # "torch", # "transformers", # "vllm", # ] # /// ``` For bleeding-edge features, use the `UV_PRERELEASE=if-necessary` environment variable to allow pre-release versions when needed. ### Docker Image For HF Jobs, we recommend the official vLLM Docker image: `vllm/vllm-openai` This image includes: - Pre-installed CUDA libraries - vLLM and all dependencies - UV package manager - Optimized for GPU inference ### Environment Variables - `HF_TOKEN`: Your Hugging Face authentication token (auto-detected if logged in) - `UV_PRERELEASE=if-necessary`: Allow pre-release packages when required - `HF_HUB_ENABLE_HF_TRANSFER=1`: Automatically enabled for faster downloads ## 🔗 Resources - [vLLM Documentation](https://docs.vllm.ai/) - [UV Documentation](https://docs.astral.sh/uv/) - [UV Scripts Organization](https://huggingface.co/uv-scripts)