viknesh1211 commited on
Commit
9d0d4da
Β·
verified Β·
1 Parent(s): b069f93

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -75
README.md CHANGED
@@ -1,75 +1,90 @@
1
- # Transverse Cirrus Bands (TCB) Dataset
2
-
3
- ## Dataset Overview
4
-
5
- This dataset contains manually annotated satellite imagery of **Transverse Cirrus Bands (TCBs)**, a type of cloud formation often associated with atmospheric turbulence. The dataset is formatted for object detection tasks using the **YOLO** and **COCO** annotation formats, making it suitable for training deep learning models for automated TCB detection.
6
-
7
- ## Data Collection
8
-
9
- - **Source**: NASA-IMPACT Data Share
10
- - **Satellite Sensors**: VIIRS (Visible Infrared Imaging Radiometer Suite), MODIS (Moderate Resolution Imaging Spectroradiometer)
11
- - **Acquisition Method**: Downloaded via AWS S3
12
-
13
- ## Annotation Details
14
-
15
- - **Format**: YOLO (.txt) and COCO (.json)
16
- - **Bounding Box Labels**: Transverse Cirrus Bands (TCB)
17
- - **Annotation Tool**: MakeSense.ai
18
- - **Total Images**: X (To be specified)
19
- - **Train/Validation/Test Split**: 70% / 20% / 10%
20
-
21
- ## File Structure
22
-
23
- ```
24
- TCB_Dataset/
25
- │── images/
26
- β”‚ β”œβ”€β”€ train/
27
- β”‚ β”œβ”€β”€ val/
28
- β”‚ β”œβ”€β”€ test/
29
- │── labels/
30
- β”‚ β”œβ”€β”€ train/
31
- β”‚ β”œβ”€β”€ val/
32
- β”‚ β”œβ”€β”€ test/
33
- │── annotations/
34
- β”‚ β”œβ”€β”€ COCO_format.json
35
- │── README.md
36
- ```
37
-
38
- ## Potential Applications
39
-
40
- - **Turbulence Detection**: Enhancing aviation safety by predicting turbulence-prone regions.
41
- - **AI-based Weather Prediction**: Training deep learning models for real-time cloud pattern analysis.
42
- - **Climate Research**: Studying the impact of TCBs on atmospheric dynamics and climate change.
43
- - **Satellite-based Hazard Assessment**: Detecting and monitoring extreme weather events.
44
-
45
- ## How to Use
46
-
47
- 1. Clone the repository:
48
- ```bash
49
- git clone <repo_link>
50
- ```
51
- 2. Load images and annotations into your object detection model pipeline.
52
- 3. Train models using **YOLOv8** or any compatible object detection framework.
53
-
54
- ## Citation
55
-
56
- If you use this dataset in your research, please cite:
57
-
58
- ```
59
- @article{TCB_Dataset2024,
60
- title={A Manually Annotated Dataset of Transverse Cirrus Bands for Object Detection in Satellite Imagery},
61
- author={Your Name},
62
- year={2024},
63
- journal={Hugging Face Dataset Repository}
64
- }
65
- ```
66
-
67
- ## License
68
-
69
- mit
70
-
71
- ---
72
-
73
- This dataset is open for contributions. Feel free to submit pull requests or raise issues for improvements!
74
-
75
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - object-detection
5
+ language:
6
+ - en
7
+ tags:
8
+ - remote_sensing
9
+ - NASA_IMPACT
10
+ - YOLO
11
+ - Cloud_image
12
+ - Turbulance
13
+ - Transverse_Cirrus_Bands
14
+ pretty_name: Manually Annotated Data Set for Transverse Cirrus Bands
15
+ size_categories:
16
+ - 100M<n<1B
17
+ ---
18
+ # Transverse Cirrus Bands (TCB) Dataset
19
+
20
+ ## Dataset Overview
21
+
22
+ This dataset contains manually annotated satellite imagery of **Transverse Cirrus Bands (TCBs)**, a type of cloud formation often associated with atmospheric turbulence. The dataset is formatted for object detection tasks using the **YOLO** and **COCO** annotation formats, making it suitable for training deep learning models for automated TCB detection.
23
+
24
+ ## Data Collection
25
+
26
+ - **Source**: NASA-IMPACT Data Share
27
+ - **Satellite Sensors**: VIIRS (Visible Infrared Imaging Radiometer Suite), MODIS (Moderate Resolution Imaging Spectroradiometer)
28
+ - **Acquisition Method**: Downloaded via AWS S3
29
+
30
+ ## Annotation Details
31
+
32
+ - **Format**: YOLO (.txt) and COCO (.json)
33
+ - **Bounding Box Labels**: Transverse Cirrus Bands (TCB)
34
+ - **Annotation Tool**: MakeSense.ai
35
+ - **Total Images**: X (To be specified)
36
+ - **Train/Validation/Test Split**: 70% / 20% / 10%
37
+
38
+ ## File Structure
39
+
40
+ ```
41
+ TCB_Dataset/
42
+ │── images/
43
+ β”‚ β”œβ”€β”€ train/
44
+ β”‚ β”œβ”€β”€ val/
45
+ β”‚ β”œβ”€β”€ test/
46
+ │── labels/
47
+ β”‚ β”œβ”€β”€ train/
48
+ β”‚ β”œβ”€β”€ val/
49
+ β”‚ β”œβ”€β”€ test/
50
+ │── annotations/
51
+ β”‚ β”œβ”€β”€ COCO_format.json
52
+ │── README.md
53
+ ```
54
+
55
+ ## Potential Applications
56
+
57
+ - **Turbulence Detection**: Enhancing aviation safety by predicting turbulence-prone regions.
58
+ - **AI-based Weather Prediction**: Training deep learning models for real-time cloud pattern analysis.
59
+ - **Climate Research**: Studying the impact of TCBs on atmospheric dynamics and climate change.
60
+ - **Satellite-based Hazard Assessment**: Detecting and monitoring extreme weather events.
61
+
62
+ ## How to Use
63
+
64
+ 1. Clone the repository:
65
+ ```bash
66
+ git clone <repo_link>
67
+ ```
68
+ 2. Load images and annotations into your object detection model pipeline.
69
+ 3. Train models using **YOLOv8** or any compatible object detection framework.
70
+
71
+ ## Citation
72
+
73
+ If you use this dataset in your research, please cite:
74
+
75
+ ```
76
+ @article{TCB_Dataset2024,
77
+ title={A Manually Annotated Dataset of Transverse Cirrus Bands for Object Detection in Satellite Imagery},
78
+ author={Your Name},
79
+ year={2024},
80
+ journal={Hugging Face Dataset Repository}
81
+ }
82
+ ```
83
+
84
+ ## License
85
+
86
+ mit
87
+
88
+ ---
89
+
90
+ This dataset is open for contributions. Feel free to submit pull requests or raise issues for improvements!