Update README.md
Browse files
README.md
CHANGED
|
@@ -144,6 +144,99 @@ configs:
|
|
| 144 |
path: proteins/train-*
|
| 145 |
---
|
| 146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
# CF/MS Elution Profile PPI Dataset
|
| 149 |
|
|
|
|
| 144 |
path: proteins/train-*
|
| 145 |
---
|
| 146 |
|
| 147 |
+
# Quickstart Usage
|
| 148 |
+
|
| 149 |
+
This dataset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library. First, install the `datasets` library via command line:
|
| 150 |
+
|
| 151 |
+
```
|
| 152 |
+
$ pip install datasets
|
| 153 |
+
```
|
| 154 |
+
|
| 155 |
+
With `datasets` installed, the user should then import it into their python script / environment:
|
| 156 |
+
|
| 157 |
+
```
|
| 158 |
+
>>> import datasets
|
| 159 |
+
```
|
| 160 |
+
|
| 161 |
+
The user can then load the `CF-MS_Homo_sapiens_PPI` dataset using `datasets.load_dataset(...)`. There are two configurations, or 'views' for the set. The user can choose between them via the `name` parameter:
|
| 162 |
+
|
| 163 |
+
* `pairs` (Default): Pairwise protein elution profiles with binary labels for whether the two proteins are known to interact
|
| 164 |
+
|
| 165 |
+
```
|
| 166 |
+
>>> view = "pairs"
|
| 167 |
+
>>> dataset = datasets.load_dataset(
|
| 168 |
+
path = "viridono/CF-MS_Homo_sapiens_PPI",
|
| 169 |
+
name = view)
|
| 170 |
+
```
|
| 171 |
+
|
| 172 |
+
* `proteins`: Individual protein elution profiles without labels for if the user wishes to assemble in a non-pairwise fashion
|
| 173 |
+
|
| 174 |
+
```
|
| 175 |
+
>>> view = "proteins"
|
| 176 |
+
>>> dataset = datasets.load_dataset(
|
| 177 |
+
path = "viridono/CF-MS_Homo_sapiens_PPI",
|
| 178 |
+
name = view)
|
| 179 |
+
```
|
| 180 |
+
|
| 181 |
+
and the dataset will be loaded as a `datasets.DatasetDict`. For pairs:
|
| 182 |
+
```
|
| 183 |
+
|
| 184 |
+
>>> dataset
|
| 185 |
+
DatasetDict({
|
| 186 |
+
train: Dataset({
|
| 187 |
+
features: ['experiment_id', 'uniprot_id1', 'uniprot_id2', 'elut_trace1', 'elut_trace2', 'label'],
|
| 188 |
+
num_rows: 2496144
|
| 189 |
+
})
|
| 190 |
+
test: Dataset({
|
| 191 |
+
features: ['experiment_id', 'uniprot_id1', 'uniprot_id2', 'elut_trace1', 'elut_trace2', 'label'],
|
| 192 |
+
num_rows: 2769931
|
| 193 |
+
})
|
| 194 |
+
})
|
| 195 |
+
```
|
| 196 |
+
|
| 197 |
+
and for proteins:
|
| 198 |
+
|
| 199 |
+
```
|
| 200 |
+
DatasetDict({
|
| 201 |
+
train: Dataset({
|
| 202 |
+
features: ['experiment_id', 'uniprot_id', 'fraction_names', 'trace'],
|
| 203 |
+
num_rows: 20383
|
| 204 |
+
})
|
| 205 |
+
})
|
| 206 |
+
```
|
| 207 |
+
|
| 208 |
+
This is a column-wise format. Elution traces are 1D vectors of protein abundances (PSMs) that are stored either in the `elut_trace#` column (for pairs) or in the `trace` (for individual proteins). Note that the traces have been uploaded in a lossless format, meaning they are not normalized across different experiments (`experiment_id`) (i.e. have differing lengths, differing peak heights).
|
| 209 |
+
|
| 210 |
+
The user may wish to normalize elution data when training. This is easily achievable following conversion to a `pandas.DataFrame`. Note that the `DatasetDict` must first be partitioned into its train and test splits:
|
| 211 |
+
|
| 212 |
+
```
|
| 213 |
+
>>> ds_train = dataset['train']
|
| 214 |
+
>>> ds_test = dataset['test']
|
| 215 |
+
>>> ds_train.to_pandas()
|
| 216 |
+
>>> ds_test.to_pandas()
|
| 217 |
+
```
|
| 218 |
+
|
| 219 |
+
# Useful Pandas Normalizations / Transformations
|
| 220 |
+
|
| 221 |
+
As a `pandas.DataFrame`, the user can then apply any of various transformations, including padding the 1D vectors to make them of uniform length:
|
| 222 |
+
|
| 223 |
+
```
|
| 224 |
+
max_len = max(df_train['elut_trace1'].apply(len))
|
| 225 |
+
df_train['elut_trace1'] = df_train['elut_trace1'].apply(lambda x: np.pad(x, (0, max_len - len(x)), mode='constant'))
|
| 226 |
+
```
|
| 227 |
+
|
| 228 |
+
or value-wise normalization, for example row-max:
|
| 229 |
+
|
| 230 |
+
```
|
| 231 |
+
df_train['elut_trace1'] = df_train['elut_trace1'].apply(lambda x: x / x.max() if x.max() != 0 else x)
|
| 232 |
+
```
|
| 233 |
+
|
| 234 |
+
Also note that elution data can be rather sparse, so the user might want to extract only the elution vectors that reach a certain minimum PSM threshold. **This should be done prior to value normalization**. Good values for minimum peak height are 5 or 10:
|
| 235 |
+
|
| 236 |
+
```
|
| 237 |
+
df_filtered = df_train[df_train['elut_trace1'].apply(lambda x: np.any(x >= 10)) &
|
| 238 |
+
df_train['elut_trace2'].apply(lambda x: np.any(x >= 10))]
|
| 239 |
+
```
|
| 240 |
|
| 241 |
# CF/MS Elution Profile PPI Dataset
|
| 242 |
|