wanderkid nielsr HF Staff commited on
Commit
2343ddd
·
verified ·
1 Parent(s): ad57845

Add task category and link to CDM paper (#2)

Browse files

- Add task category and link to CDM paper (6877d4fcfac51b885b2f1c3e94ea3ab8686e0dfc)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +10 -7
README.md CHANGED
@@ -1,16 +1,19 @@
1
  ---
2
- license: apache-2.0
3
  language:
4
  - en
5
  - zh
 
 
 
6
  pretty_name: UniMER_Dataset
7
  tags:
8
  - data
9
  - math
10
  - MER
11
- size_categories:
12
- - 1M<n<10M
13
  ---
 
14
  # UniMER Dataset
15
 
16
  For detailed instructions on using the dataset, please refer to the project homepage: [UniMERNet Homepage](https://github.com/opendatalab/UniMERNet/tree/main)
@@ -31,7 +34,6 @@ The UniMER dataset is a specialized collection curated to advance the field of M
31
  - Handwritten Expressions (HWE): 6,332 samples
32
  - Purpose: To provide a thorough evaluation of MER models across a spectrum of real-world conditions
33
 
34
-
35
  ## Visual Data Samples
36
  ![UniMER-Test](https://github.com/opendatalab/UniMERNet/assets/69186975/7301df68-e14c-4607-81bc-b6ee3ba1780b)
37
 
@@ -51,8 +53,9 @@ The UniMER dataset is a specialized collection curated to advance the field of M
51
  ‡ For copyright compliance, please manually download this dataset portion: [HME100K dataset](https://ai.100tal.com/dataset).
52
 
53
  ## Acknowledgements
54
- We would like to express our gratitude to the creators of the [Pix2tex](https://github.com/lukas-blecher/LaTeX-OCR), [CROHME](https://www.cs.rit.edu/~rlaz/files/CROHME+TFD%E2%80%932019.pdf), and [HME100K](https://github.com/tal-tech/SAN) datasets. Their foundational work has significantly contributed to the development of the UniMER dataset.
55
 
 
56
 
57
  ## Citations
58
 
@@ -129,9 +132,9 @@ UniMER数据集是专门为通用数学表达式识别(MER)发布的数据
129
  }
130
 
131
  @misc{conghui2022opendatalab,
132
- author={He, Conghui and Li, Wei and Jin, Zhenjiang and Wang, Bin and Xu, Chao and Lin, Dahua},
133
  title={OpenDataLab: Empowering General Artificial Intelligence with Open Datasets},
134
  howpublished = {\url{https://opendatalab.com}},
135
  year={2022}
136
  }
137
- ```
 
1
  ---
 
2
  language:
3
  - en
4
  - zh
5
+ license: apache-2.0
6
+ size_categories:
7
+ - 1M<n<10M
8
  pretty_name: UniMER_Dataset
9
  tags:
10
  - data
11
  - math
12
  - MER
13
+ task_categories:
14
+ - image-to-text
15
  ---
16
+
17
  # UniMER Dataset
18
 
19
  For detailed instructions on using the dataset, please refer to the project homepage: [UniMERNet Homepage](https://github.com/opendatalab/UniMERNet/tree/main)
 
34
  - Handwritten Expressions (HWE): 6,332 samples
35
  - Purpose: To provide a thorough evaluation of MER models across a spectrum of real-world conditions
36
 
 
37
  ## Visual Data Samples
38
  ![UniMER-Test](https://github.com/opendatalab/UniMERNet/assets/69186975/7301df68-e14c-4607-81bc-b6ee3ba1780b)
39
 
 
53
  ‡ For copyright compliance, please manually download this dataset portion: [HME100K dataset](https://ai.100tal.com/dataset).
54
 
55
  ## Acknowledgements
56
+ We would like to express our gratitude to the creators of the [Pix2tex](https://github.com/lukas-blecher/LaTeX-OCR), [CROHME](https://www.cs.rit.edu/~rlaz/files/CROHME+TFD%E2%80%932019.pdf), and [HME100K](https://github.com/tal-tech/SAN) datasets. Their foundational work has significantly contributed to the development of the UniMER dataset.
57
 
58
+ A new metric for evaluating this dataset is presented in [CDM: A Reliable Metric for Fair and Accurate Formula Recognition Evaluation](https://huggingface.co/papers/2409.03643).
59
 
60
  ## Citations
61
 
 
132
  }
133
 
134
  @misc{conghui2022opendatalab,
135
+ author={He, Conghui and Li, Wei, Jin, Zhenjiang and Wang, Bin and Xu, Chao and Lin, Dahua},
136
  title={OpenDataLab: Empowering General Artificial Intelligence with Open Datasets},
137
  howpublished = {\url{https://opendatalab.com}},
138
  year={2022}
139
  }
140
+ ```