Datasets:
File size: 10,086 Bytes
ac2b3fc 66900ff 297c435 66900ff ac2b3fc 66900ff ac2b3fc 66900ff ac2b3fc 1d68531 3af41c8 9dbae9b 069b080 caf2bba 805dd93 f034fb4 3d453aa dbd0a0c 72e3a08 7b40bb8 891b5b4 8c5daf8 950b4f0 705a2f9 8853fba a71ca90 00743f9 371923c b4233a8 7cbdb70 3e4530a e2c0826 1092c08 967fd37 82425c6 dfa3f08 8d12d3a 5882101 f881722 4d07650 734df3c 5e5bfad f0bb0c3 eba878b ec7d13b 824f959 a62818f d49634c c1186c4 c83db3c 09beb22 8ee5cbc f4ec1e2 5d3e128 7fb83d2 c3dc975 3180e58 9638ac9 41e61db d197279 fecd2f1 3218e3d e6fcf95 62dd98a fa6445f ab79aee ec10c8d 7455409 407a62c 51c19aa 8eeb5ff ada8bbb 0ac1ac5 e0ba1f1 74a6a59 492864c 9c980a7 f4558d1 e75adca 8e6f2f0 45ed2fb 6c575b3 5629433 d4bbc19 6302282 297c435 d10c690 744413e 2992423 b673525 05205eb 17c831e da3ef2a d091384 e625fd6 8d78684 44bc6f9 8a4d5e4 f1a4511 c024f76 e73b2c8 c358be1 5c3225a 1a0e884 6eb0301 06ead89 68e2937 13a61e0 487534d 33a6980 1bf003b a75b8bb 058dd80 bf7aacb 9b80e90 bb81b82 568704b 9d3e5b9 9b68143 5de7625 2aa8734 213ea0a 61fca13 66900ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 Reddit Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** wavecreator22/reddit_dataset_108
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5C4ocMvKomsyb5WNeNqzBTPErtJ3AeyX81Y1dAYnDex66wBu
### Miner Data Compliance Agreement
In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md).
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Topic Modeling
- Community Analysis
- Content Categorization
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single Reddit post or comment with the following fields:
### Data Fields
- `text` (string): The main content of the Reddit post or comment.
- `label` (string): Sentiment or topic category of the content.
- `dataType` (string): Indicates whether the entry is a post or a comment.
- `communityName` (string): The name of the subreddit where the content was posted.
- `datetime` (string): The date when the content was posted or commented.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the content.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the nature of media sources.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public subreddits and does not include private or restricted communities.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{wavecreator222025datauniversereddit_dataset_108,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={wavecreator22},
year={2025},
url={https://huggingface.co/datasets/wavecreator22/reddit_dataset_108},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 11121
- **Date Range:** 2025-06-28T00:00:00Z to 2025-07-09T00:00:00Z
- **Last Updated:** 2025-07-28T23:30:10Z
### Data Distribution
- Posts: 7.48%
- Comments: 91.62%
### Top 10 Subreddits
For full statistics, please refer to the `stats.json` file in the repository.
| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | r/2007scape | 3967 | 35.99% |
| 2 | r/18above_Roleplay | 2163 | 19.63% |
| 3 | r/10thDentist | 1797 | 16.31% |
| 4 | r/10s | 1432 | 12.99% |
| 5 | r/3Dprinting | 906 | 8.22% |
| 6 | r/18F | 189 | 1.71% |
| 7 | r/1000lbsisters | 178 | 1.62% |
| 8 | r/100Kanojo | 155 | 1.41% |
| 9 | r/2westerneurope4u | 96 | 0.87% |
| 10 | r/20062007gw | 64 | 0.58% |
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-07-09T07:46:38Z | 100 | 100 |
| 2025-07-09T07:46:45Z | 84 | 184 |
| 2025-07-09T07:49:46Z | 77 | 261 |
| 2025-07-09T07:51:56Z | 79 | 340 |
| 2025-07-09T08:52:27Z | 85 | 425 |
| 2025-07-09T09:52:56Z | 83 | 508 |
| 2025-07-09T10:53:35Z | 83 | 591 |
| 2025-07-09T11:54:04Z | 83 | 674 |
| 2025-07-09T12:54:31Z | 85 | 759 |
| 2025-07-09T13:55:27Z | 97 | 856 |
| 2025-07-09T14:56:00Z | 98 | 954 |
| 2025-07-09T15:56:51Z | 92 | 1046 |
| 2025-07-09T16:57:33Z | 81 | 1127 |
| 2025-07-09T17:58:03Z | 100 | 1227 |
| 2025-07-09T18:58:27Z | 97 | 1324 |
| 2025-07-09T19:58:58Z | 100 | 1424 |
| 2025-07-09T20:59:31Z | 100 | 1524 |
| 2025-07-10T01:00:50Z | 99 | 1623 |
| 2025-07-10T02:01:14Z | 99 | 1722 |
| 2025-07-10T03:01:33Z | 98 | 1820 |
| 2025-07-10T04:01:54Z | 98 | 1918 |
| 2025-07-10T05:02:13Z | 100 | 2018 |
| 2025-07-10T06:02:36Z | 100 | 2118 |
| 2025-07-10T07:03:03Z | 99 | 2217 |
| 2025-07-10T08:03:36Z | 98 | 2315 |
| 2025-07-10T09:04:19Z | 99 | 2414 |
| 2025-07-10T10:04:41Z | 99 | 2513 |
| 2025-07-10T11:05:24Z | 98 | 2611 |
| 2025-07-10T12:05:58Z | 98 | 2709 |
| 2025-07-10T13:06:24Z | 100 | 2809 |
| 2025-07-10T14:06:59Z | 100 | 2909 |
| 2025-07-10T15:07:37Z | 96 | 3005 |
| 2025-07-10T16:08:01Z | 99 | 3104 |
| 2025-07-10T17:08:31Z | 99 | 3203 |
| 2025-07-10T18:08:59Z | 98 | 3301 |
| 2025-07-10T19:09:33Z | 95 | 3396 |
| 2025-07-10T20:10:01Z | 99 | 3495 |
| 2025-07-10T21:10:22Z | 100 | 3595 |
| 2025-07-10T22:10:42Z | 99 | 3694 |
| 2025-07-10T23:10:59Z | 99 | 3793 |
| 2025-07-11T00:11:23Z | 99 | 3892 |
| 2025-07-11T01:12:03Z | 99 | 3991 |
| 2025-07-11T02:12:32Z | 97 | 4088 |
| 2025-07-11T03:12:55Z | 100 | 4188 |
| 2025-07-11T04:13:20Z | 97 | 4285 |
| 2025-07-11T05:13:41Z | 99 | 4384 |
| 2025-07-11T06:14:05Z | 100 | 4484 |
| 2025-07-11T07:14:25Z | 95 | 4579 |
| 2025-07-11T08:14:49Z | 99 | 4678 |
| 2025-07-11T09:15:13Z | 100 | 4778 |
| 2025-07-11T10:15:49Z | 91 | 4869 |
| 2025-07-11T11:16:21Z | 94 | 4963 |
| 2025-07-11T12:16:54Z | 99 | 5062 |
| 2025-07-11T13:17:36Z | 97 | 5159 |
| 2025-07-11T14:18:04Z | 100 | 5259 |
| 2025-07-11T15:18:32Z | 100 | 5359 |
| 2025-07-11T16:19:06Z | 97 | 5456 |
| 2025-07-11T17:19:35Z | 100 | 5556 |
| 2025-07-11T18:20:05Z | 100 | 5656 |
| 2025-07-11T19:20:35Z | 100 | 5756 |
| 2025-07-11T20:21:17Z | 98 | 5854 |
| 2025-07-11T21:21:57Z | 98 | 5952 |
| 2025-07-11T22:22:22Z | 96 | 6048 |
| 2025-07-11T23:22:46Z | 100 | 6148 |
| 2025-07-12T00:23:16Z | 97 | 6245 |
| 2025-07-12T01:23:41Z | 95 | 6340 |
| 2025-07-12T02:24:10Z | 98 | 6438 |
| 2025-07-12T03:24:44Z | 98 | 6536 |
| 2025-07-12T04:25:23Z | 95 | 6631 |
| 2025-07-12T05:25:48Z | 100 | 6731 |
| 2025-07-12T06:26:21Z | 95 | 6826 |
| 2025-07-12T07:26:42Z | 97 | 6923 |
| 2025-07-12T08:27:10Z | 95 | 7018 |
| 2025-07-12T09:27:31Z | 95 | 7113 |
| 2025-07-12T10:28:01Z | 95 | 7208 |
| 2025-07-12T11:28:55Z | 92 | 7300 |
| 2025-07-12T12:29:23Z | 99 | 7399 |
| 2025-07-12T13:29:50Z | 98 | 7497 |
| 2025-07-27T15:15:32Z | 77 | 7574 |
| 2025-07-27T16:15:59Z | 95 | 7669 |
| 2025-07-27T16:28:39Z | 94 | 7763 |
| 2025-07-27T16:47:37Z | 100 | 7863 |
| 2025-07-27T16:56:36Z | 100 | 7963 |
| 2025-07-27T17:20:32Z | 93 | 8056 |
| 2025-07-27T18:21:00Z | 92 | 8148 |
| 2025-07-27T18:44:33Z | 90 | 8238 |
| 2025-07-27T19:45:05Z | 91 | 8329 |
| 2025-07-27T19:58:28Z | 94 | 8423 |
| 2025-07-27T20:07:59Z | 83 | 8506 |
| 2025-07-27T20:16:30Z | 94 | 8600 |
| 2025-07-27T21:17:03Z | 88 | 8688 |
| 2025-07-27T22:17:36Z | 86 | 8774 |
| 2025-07-27T23:18:05Z | 85 | 8859 |
| 2025-07-28T00:18:27Z | 93 | 8952 |
| 2025-07-28T01:18:54Z | 80 | 9032 |
| 2025-07-28T02:19:22Z | 74 | 9106 |
| 2025-07-28T03:19:48Z | 88 | 9194 |
| 2025-07-28T04:20:12Z | 85 | 9279 |
| 2025-07-28T05:20:33Z | 87 | 9366 |
| 2025-07-28T06:21:03Z | 90 | 9456 |
| 2025-07-28T07:21:29Z | 92 | 9548 |
| 2025-07-28T08:21:57Z | 88 | 9636 |
| 2025-07-28T09:22:28Z | 100 | 9736 |
| 2025-07-28T10:23:08Z | 100 | 9836 |
| 2025-07-28T11:23:44Z | 100 | 9936 |
| 2025-07-28T12:24:11Z | 100 | 10036 |
| 2025-07-28T13:24:46Z | 100 | 10136 |
| 2025-07-28T14:25:23Z | 99 | 10235 |
| 2025-07-28T15:26:14Z | 100 | 10335 |
| 2025-07-28T16:26:40Z | 96 | 10431 |
| 2025-07-28T17:27:05Z | 100 | 10531 |
| 2025-07-28T18:27:42Z | 100 | 10631 |
| 2025-07-28T19:28:25Z | 99 | 10730 |
| 2025-07-28T20:28:54Z | 100 | 10830 |
| 2025-07-28T21:29:23Z | 100 | 10930 |
| 2025-07-28T22:29:47Z | 94 | 11024 |
| 2025-07-28T23:30:10Z | 97 | 11121 |
|