|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""NFH: Numeric Fused-Heads.""" |
|
|
|
|
|
import csv |
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{elazar_head, |
|
author = {Elazar, Yanai and Goldberg, Yoav}, |
|
title = {Where’s My Head? Definition, Data Set, and Models for Numeric Fused-Head Identification and Resolution}, |
|
journal = {Transactions of the Association for Computational Linguistics}, |
|
volume = {7}, |
|
number = {}, |
|
pages = {519-535}, |
|
year = {2019}, |
|
doi = {10.1162/tacl\\_a\\_00280}, |
|
URL = {https://doi.org/10.1162/tacl_a_00280}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Fused Head constructions are noun phrases in which the head noun is \ |
|
missing and is said to be "fused" with its dependent modifier. This \ |
|
missing information is implicit and is important for sentence understanding.\ |
|
The missing heads are easily filled in by humans, but pose a challenge for \ |
|
computational models. |
|
|
|
For example, in the sentence: "I bought 5 apples but got only 4.", 4 is a \ |
|
Fused-Head, and the missing head is apples, which appear earlier in the sentence. |
|
|
|
This is a crowd-sourced dataset of 10k numerical fused head examples (1M tokens). |
|
""" |
|
|
|
_HOMEPAGE = "https://nlp.biu.ac.il/~lazary/fh/" |
|
|
|
_LICENSE = "MIT" |
|
|
|
_URLs = { |
|
"identification": { |
|
"train": "https://raw.githubusercontent.com/yanaiela/num_fh/master/data/identification/processed/train.tsv", |
|
"test": "https://raw.githubusercontent.com/yanaiela/num_fh/master/data/identification/processed/test.tsv", |
|
"dev": "https://raw.githubusercontent.com/yanaiela/num_fh/master/data/identification/processed/dev.tsv", |
|
}, |
|
"resolution": { |
|
"train": "https://raw.githubusercontent.com/yanaiela/num_fh/master/data/resolution/processed/nfh_train.jsonl", |
|
"test": "https://raw.githubusercontent.com/yanaiela/num_fh/master/data/resolution/processed/nfh_test.jsonl", |
|
"dev": "https://raw.githubusercontent.com/yanaiela/num_fh/master/data/resolution/processed/nfh_dev.jsonl", |
|
}, |
|
} |
|
|
|
|
|
class NumericFusedHead(datasets.GeneratorBasedBuilder): |
|
"""NFH: Numeric Fused-Heads""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="identification", description="Identify NFH anchors in a sentence"), |
|
datasets.BuilderConfig(name="resolution", description="Identify the head for the numeric anchor"), |
|
] |
|
|
|
def _info(self): |
|
if self.config.name == "identification": |
|
features = datasets.Features( |
|
{ |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"start_index": datasets.Value("int32"), |
|
"end_index": datasets.Value("int32"), |
|
"label": datasets.features.ClassLabel(names=["neg", "pos"]), |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"line_indices": datasets.Sequence(datasets.Value("int32")), |
|
"head": datasets.Sequence(datasets.Value("string")), |
|
"speakers": datasets.Sequence(datasets.Value("string")), |
|
"anchors_indices": datasets.Sequence(datasets.Value("int32")), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_files = dl_manager.download_and_extract(_URLs[self.config.name]) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
if self.config.name == "identification": |
|
r = csv.DictReader(f, delimiter="\t") |
|
for id_, row in enumerate(r): |
|
data = { |
|
"tokens": row["text"].split("_SEP_"), |
|
"start_index": row["ind_s"], |
|
"end_index": row["ind_e"], |
|
"label": "neg" if row["y"] == "0" else "pos", |
|
} |
|
yield id_, data |
|
else: |
|
for id_, row in enumerate(f): |
|
data = json.loads(row) |
|
yield id_, { |
|
"tokens": data["tokens"], |
|
"line_indices": data["line_indices"], |
|
"head": [str(s) for s in data["head"]], |
|
"speakers": [str(s) for s in data["speakers"]], |
|
"anchors_indices": data["anchors_indices"], |
|
} |
|
|