Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
yambda / benchmarks /scripts /get_dataset_stats.py
ploshkin's picture
Add code for benchmarking
1be89f3 verified
raw
history blame
7.09 kB
import enum
import os
from pathlib import Path
import click
import matplotlib.pyplot as plt
import polars as pl
class ImageFormat(enum.Enum):
PNG = "png"
JPEG = "jpg"
@click.command()
@click.option(
"--src_dir",
type=click.Path(exists=True, file_okay=False),
required=True,
help="Path to the directory containing dataset, e.g., './data'.",
)
@click.option(
"--dst_dir",
type=click.Path(file_okay=False),
required=False,
help="Path to the directory where statisics will be saved. "
"If not specified, statistics is saved in '{src_dir}/stats'. e.g., './stats'.",
)
@click.option(
"--file_name",
type=str,
default="multi_event",
help="Base name for multi-event file. Default is 'multi_event'.",
)
def cli(src_dir: str, dst_dir: str, file_name: str):
if dst_dir is None:
dst_dir = f"{src_dir}/stats"
generate_dataset_stats(src_dir, dst_dir, file_name)
def generate_dataset_stats(src_dir: str, dst_dir: str, file_name: str):
src_dir, dst_dir = Path(src_dir), Path(dst_dir)
src_dir_flat, src_dir_seq = src_dir / "flat", src_dir / "sequential"
file_name = f"{file_name}.parquet"
sizes = sorted(path.name for path in src_dir_flat.iterdir())
for size in sizes:
path_flat, path_seq = src_dir_flat / size, src_dir_seq / size
assert path_seq.exists(), f"Cannot find sequential data in '{path_seq}'"
assert (path_flat / file_name).exists(), (
"Please, generate flat multi-event file using "
"'make_multievent.py' or specify correct name using --file_name"
)
assert (path_seq / file_name).exists(), (
"Please, generate sequential multi-event file "
"using 'transform2sequential.py' script or specify correct name "
"using --file_name"
)
print(f"Gathering stats for {size}...")
dst_dir_size = dst_dir / size
dst_dir_size.mkdir(parents=True, exist_ok=True)
df = pl.scan_parquet(path_seq / file_name)
generate_user_history_graph(df, dst_dir_size / "user_history_len.png")
generate_log_user_history_graph(df, dst_dir_size / "user_history_log_len.png")
df = pl.scan_parquet(path_flat / file_name)
generate_item_interactions_graph(df, dst_dir_size / "item_interactions.png")
get_recom_stats(df).write_csv(dst_dir_size / "recom_event_count.csv")
get_history_len_stats(df).write_csv(dst_dir_size / "event_history_len.csv")
get_dataset_stats(df).write_csv(dst_dir_size / "dataset_event_stats.csv")
def make_history_len_graph(
df: pl.DataFrame,
*,
qs: tuple[float] | None = None,
color: str = "lightskyblue",
num_bins: int = 100,
title: str | None = None,
xlabel: str | None = None,
ylabel: str | None = None,
ax: plt.Axes | None = None,
) -> plt.Axes:
if ax is None:
_, ax = plt.subplots(figsize=(12, 5))
count, _, _ = ax.hist(df["value"], bins=num_bins, ec="k", lw=1.0, color=color)
ylim = count.max() * 1.05
xs = {"max": df["value"].max()}
if qs is not None:
xs.update((f"q{q * 100:.0f}", df["value"].quantile(q)) for q in qs)
dx = 0.01 * (xs["max"] - df["value"].min())
template = "{label}={x:.3f}" if xs["max"] <= 10 else "{label}={x:.0f}"
for label, x in xs.items():
ax.plot([x, x], [0, ylim], ls="--", c="k")
text = template.format(label=label, x=x)
ax.text(x + dx, ylim // 2, text, rotation=90, fontsize=16, bbox=dict(alpha=0.1, color="r"))
if title is not None:
ax.set_title(title, fontsize=24)
ax.set_xlabel(xlabel or "Value", fontsize=22)
ax.set_ylabel(ylabel or "Count", fontsize=22)
ax.set_ylim([0, ylim])
ax.tick_params(labelsize=16)
ax.ticklabel_format(style="sci", useMathText=True)
def save_graph(output_path: os.PathLike, fmt: ImageFormat = ImageFormat.PNG):
output_path = Path(output_path)
if not output_path.suffix:
output_path = output_path.with_suffix(f".{fmt.value}")
if output_path.exists():
print(f"Rewriting file '{output_path}'")
else:
print(f"Saving to '{output_path}'")
plt.savefig(output_path, dpi=300, format=fmt.value)
def generate_user_history_graph(df: pl.LazyFrame, out_path: os.PathLike):
_, ax = plt.subplots(figsize=(12, 5))
make_history_len_graph(
df.select(value=pl.col("item_id").list.len()).collect(),
num_bins=100,
qs=(0.5, 0.9, 0.95),
xlabel="Events",
ylabel="Users",
ax=ax,
)
plt.tight_layout()
save_graph(out_path)
def generate_log_user_history_graph(df: pl.LazyFrame, out_path: os.PathLike):
_, ax = plt.subplots(figsize=(12, 5))
make_history_len_graph(
df.select(value=pl.col("item_id").list.len().log10()).collect(),
num_bins=40,
xlabel="$Log_{10}$(Events)",
ylabel="Users",
color="lightgreen",
ax=ax,
)
plt.tight_layout()
save_graph(out_path)
def generate_item_interactions_graph(df: pl.LazyFrame, out_path: os.PathLike):
_, ax = plt.subplots(figsize=(12, 5))
make_history_len_graph(
df.group_by("item_id").len().select(value=pl.col("len").log10()).collect(),
num_bins=30,
qs=(0.5, 0.9, 0.95),
xlabel="$Log_{10}$(Events)",
ylabel="Items",
color="orange",
ax=ax,
)
plt.tight_layout()
save_graph(out_path)
def get_recom_stats(df: pl.LazyFrame) -> pl.DataFrame:
print("Computing recom stats")
df_cnt = df.group_by(("event_type", "is_organic")).len().collect()
df_recom = df_cnt.filter(pl.col("is_organic").eq(0)).select(pl.col("event_type"), pl.col("len").alias("recom"))
df_total = df_cnt.group_by("event_type").sum().select(pl.col("event_type"), pl.col("len").alias("total"))
return df_total.join(df_recom, on="event_type").with_columns(ratio=pl.col("recom") / pl.col("total"))
def get_history_len_stats(df: pl.LazyFrame) -> pl.DataFrame:
print("Computing event history length stats")
return (
df.group_by(("event_type", "uid"))
.len()
.group_by("event_type")
.agg(
median=pl.col("len").quantile(0.5).cast(pl.Int32),
q90=pl.col("len").quantile(0.9).cast(pl.Int32),
q95=pl.col("len").quantile(0.95).cast(pl.Int32),
)
.collect()
)
def get_dataset_stats(df: pl.LazyFrame) -> pl.DataFrame:
print("Computing dataset stats")
return df.select(
users=pl.col("uid").unique().len(),
items=pl.col("item_id").unique().len(),
listens=pl.col("event_type").filter(pl.col("event_type").eq("listen")).len(),
likes=pl.col("event_type").filter(pl.col("event_type").eq("like")).len(),
dislikes=pl.col("event_type").filter(pl.col("event_type").eq("dislike")).len(),
unlikes=pl.col("event_type").filter(pl.col("event_type").eq("unlike")).len(),
undislikes=pl.col("event_type").filter(pl.col("event_type").eq("undislike")).len(),
).collect()
if __name__ == "__main__":
cli()