Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
ploshkin NonameUntitled commited on
Commit
af9f112
·
verified ·
1 Parent(s): 2eca204

Update benchmarks/models/itemknn/README.md (#8)

Browse files

- Update benchmarks/models/itemknn/README.md (e8b04458db77e2fb30a24e65f78923fa48b7d297)


Co-authored-by: Vladimir <[email protected]>

benchmarks/models/itemknn/README.md CHANGED
@@ -1,10 +1,10 @@
1
  # ItemKNN
2
 
3
- We employ cosine similarity to measure similarity between vectors. Item vectors are represented as num_users-dimensional vectors derived from the user-item interaction matrix.
4
 
5
  Top-k recommendations are generated by retrieving vectors closest to the user's temporal interaction pattern (with decay parameter \\(\tau \rightarrow 0\\)) controlling historical influence).
6
 
7
- The formulation is: \\(score(user_i, item_j) = \cos(V[i, :], U[:,j])\\),
8
 
9
  where:
10
 
@@ -12,7 +12,7 @@ where:
12
 
13
  - \\(V\\) [num users \\(\times\\) num users]: user embedding matrix, where each row is:
14
 
15
- \\(V[i, :] = \sum_{(t, k) \in A_i} \tau^{\max_t(i) - t} U[:, k]^T\\)
16
 
17
  - \\(A_i\\): set of \\(i\\)-th user's (interaction timestamp, item index) pairs
18
  - \\(\max_t(i)\\): last \\(i\\)-th user's interaction timestamp
@@ -22,9 +22,5 @@ where:
22
  The hyperparameter `hour` defines the time period (in hours) associated with a decay factor of 0.9.
23
 
24
 
25
- ## Memory Optimization
26
-
27
- For 5b datasets, the matrix multiplications between [num users \\(\times\\) num item] and [num item \\(\times\\) num items] exceeds memory constraints.
28
-
29
- To solve this, we leverage cosine similarity to the mean embedding instead of pairwise similarities to avoid new dimension (x basket_size).
30
 
 
1
  # ItemKNN
2
 
3
+ We employ cosine similarity to measure similarity between vectors. Item vectors are represented as (num users)-dimensional vectors derived from the user-item interaction matrix, where component \\(d\\) represents how many times user \\(d\\) interacted with this item.
4
 
5
  Top-k recommendations are generated by retrieving vectors closest to the user's temporal interaction pattern (with decay parameter \\(\tau \rightarrow 0\\)) controlling historical influence).
6
 
7
+ The formulation is: \\(score(user_i, item_j) = \cos(V[i,:], U^\top[j,:])\\),
8
 
9
  where:
10
 
 
12
 
13
  - \\(V\\) [num users \\(\times\\) num users]: user embedding matrix, where each row is:
14
 
15
+ \\(V[i, :] = \sum_{(t, k) \in A_i} \tau^{\max_t(i) - t} U^\top[k, :]\\)
16
 
17
  - \\(A_i\\): set of \\(i\\)-th user's (interaction timestamp, item index) pairs
18
  - \\(\max_t(i)\\): last \\(i\\)-th user's interaction timestamp
 
22
  The hyperparameter `hour` defines the time period (in hours) associated with a decay factor of 0.9.
23
 
24
 
25
+ For 5b datasets, the results are not provided due to exceeding of memory constraints caused by matrix multiplications between [num users \\(\times\\) num item] and [num item \\(\times\\) num items].
 
 
 
 
26