import json from pathlib import Path from typing import Any import click import polars as pl import torch from yambda.constants import Constants from yambda.evaluation.metrics import calc_metrics from yambda.evaluation.ranking import Embeddings, Ranked, Targets from yambda.processing import timesplit from yambda.utils import argmax @click.command() @click.option( '--data_dir', required=True, type=str, default="../../data/flat", show_default=True, help="Expects flat data" ) @click.option( '--size', required=True, type=click.Choice(['50m', '500m', "5b"]), default=["50m"], multiple=True, show_default=True, ) @click.option( '--interaction', required=True, type=click.Choice(['likes', 'listens']), default=["likes"], multiple=True, show_default=True, ) @click.option( '--hours', required=True, type=float, default=[0.5, 1, 2, 3, 6, 12, 24], multiple=True, show_default=True, help="Hyperparameter", ) @click.option('--validation_metric', required=True, type=str, default="ndcg@100", show_default=True) @click.option('--report_metrics', required=True, type=str, default=Constants.METRICS, multiple=True, show_default=True) @click.option('--device', required=True, type=str, default="cuda:0", show_default=True) def main( data_dir: str, size: list[str], interaction: list[str], hours: list[float], validation_metric: str, report_metrics: list[str], device: str, ): print(f"REPORT METRICS: {report_metrics}") for s in size: for i in interaction: print(f"SIZE {s}, INTERACTION {i}") result = popularity( data_dir, s, i, device, hours=hours, validation_metric=validation_metric, report_metrics=report_metrics, ) print(json.dumps(result, indent=2)) def scan(path: str, dataset_size: str, dataset_name: str) -> pl.LazyFrame: path: Path = Path(path) / dataset_size / dataset_name df = pl.scan_parquet(path.with_suffix(".parquet")) return df def preprocess( df: pl.LazyFrame, interaction: str, val_size: int ) -> tuple[pl.LazyFrame, pl.LazyFrame | None, pl.LazyFrame]: if interaction == "listens": df = df.filter(pl.col("played_ratio_pct") >= Constants.TRACK_LISTEN_THRESHOLD) train, val, test = timesplit.flat_split_train_val_test( df, val_size=val_size, test_timestamp=Constants.TEST_TIMESTAMP ) return ( train, val.collect(engine="streaming").lazy() if val is not None else None, test.collect(engine="streaming").lazy(), ) def training(hour: float, train: pl.LazyFrame, max_timestamp: float, device: str, decay: float = 0.9) -> Embeddings: if hour == 0: embeddings = train.group_by("item_id").agg(pl.count().alias("item_embedding")).collect(engine="streaming") else: tau = decay ** (1 / Constants.DAY_SECONDS / (hour / 24)) embeddings = ( train.select( "item_id", (tau ** (max_timestamp - pl.col("timestamp"))).alias("value"), ) .group_by("item_id") .agg(pl.col("value").sum().alias("item_embedding")) .collect(engine="streaming") ) item_ids = embeddings["item_id"].to_torch().to(device) item_embeddings = embeddings["item_embedding"].to_torch().to(device)[:, None] return Embeddings(item_ids, item_embeddings) def evaluation( train: pl.LazyFrame, val: pl.LazyFrame, device: str, hours: list[float], metrics: list[str] ) -> list[dict[str, Any]]: num_ranked_items = max([int(x.split("@")[1]) for x in metrics]) max_timestamp = train.select(pl.col("timestamp").max()).collect(engine="streaming").item() user_ids = train.select("uid").unique().collect(engine="streaming")["uid"].to_torch().to(device) targets = Targets.from_sequential( val.group_by('uid', maintain_order=True).agg("item_id"), device, ) hour2metrics = [] for hour in hours: item_embeddings = training( hour=hour, train=train, max_timestamp=max_timestamp, device=device, ) ranked = Ranked( user_ids=user_ids, item_ids=item_embeddings.ids[torch.topk(item_embeddings.embeddings, num_ranked_items, dim=0).indices] .ravel() .expand((user_ids.shape[0], num_ranked_items)), num_item_ids=item_embeddings.ids.shape[0], ) hour2metrics.append(calc_metrics(ranked, targets, metrics)) return hour2metrics def popularity( data_dir: str, size: str, interaction: str, device: str, hours: list[float], validation_metric: str, report_metrics: list[str], ) -> dict[str, Any]: df = scan(data_dir, size, interaction) # hyperopt by validation train, val, _ = preprocess(df, interaction, val_size=Constants.VAL_SIZE) results = evaluation(train, val, device, hours, [validation_metric]) metric_name, k = validation_metric.split('@') best_hour = hours[argmax(results, lambda x: x[metric_name][int(k)])] print(f"FINAL HYPERPARAMS {best_hour=}") # train final model train, _, test = preprocess(df, interaction, val_size=0) return evaluation(train, test, device, [best_hour], report_metrics)[0] if __name__ == "__main__": main()