import json from pathlib import Path import click import polars as pl import torch from yambda.constants import Constants from yambda.evaluation.metrics import calc_metrics from yambda.evaluation.ranking import Ranked, Targets from yambda.processing import timesplit from yambda.utils import mean_dicts @click.command() @click.option( '--data_dir', required=True, type=str, default="../../data/flat", show_default=True, help="Expects flat data", ) @click.option( '--size', required=True, type=click.Choice(['50m', '500m', "5b"]), default=["50m"], multiple=True, show_default=True, ) @click.option( '--interaction', required=True, type=click.Choice(['likes', 'listens']), default=["likes"], multiple=True, show_default=True, ) @click.option('--device', required=True, type=str, default="cuda:0", show_default=True) @click.option('--num_repeats', required=True, type=int, default=2, show_default=True) def main( data_dir: str, size: list[str], interaction: list[str], device: str, num_repeats: int, ): print(f"calc metrics: {Constants.METRICS}") for s in size: for i in interaction: print(f"SIZE {s}, INTERACTION {i}") result = random_rec(data_dir, s, i, num_repeats, device) print(json.dumps(result, indent=2)) def scan(path: str, dataset_size: str, dataset_name: str) -> pl.LazyFrame: path: Path = Path(path) / dataset_size / dataset_name return pl.scan_parquet(path.with_suffix(".parquet")) def preprocess( df: pl.LazyFrame, interaction: str, val_size: int ) -> tuple[pl.LazyFrame, pl.LazyFrame | None, pl.LazyFrame]: if interaction == "listens": df = df.filter(pl.col("played_ratio_pct") >= Constants.TRACK_LISTEN_THRESHOLD) train, val, test = timesplit.flat_split_train_val_test( df, val_size=val_size, test_timestamp=Constants.TEST_TIMESTAMP ) return ( train, val.collect(engine="streaming").lazy() if val is not None else None, test.collect(engine="streaming").lazy(), ) def random_rec( data_dir: str, size: str, interaction: str, num_repeats: int, device: str, ) -> dict[str, dict[int, float]]: df = scan(data_dir, size, interaction) train, _, test = preprocess(df, interaction, val_size=0) unique_user_ids = train.select("uid").unique().sort("uid").collect(engine="streaming")["uid"].to_torch().to(device) unique_item_ids = ( train.select("item_id").unique().sort("item_id").collect(engine="streaming")["item_id"].to_torch().to(device) ) print(f"NUM_USERS {unique_user_ids.shape[0]}, NUM_ITEMS {unique_item_ids.shape[0]}") targets = Targets.from_sequential( test.group_by('uid', maintain_order=True).agg("item_id"), device, ) metrics_list = [] for _ in range(num_repeats): ranked = Ranked( user_ids=unique_user_ids, item_ids=unique_item_ids[ torch.randint( 0, unique_item_ids.shape[0] - 1, size=(unique_user_ids.shape[0], Constants.NUM_RANKED_ITEMS) ) ], num_item_ids=unique_item_ids.shape[0], ) metrics_list.append( calc_metrics( ranked, targets, metrics=Constants.METRICS, ) ) return mean_dicts(metrics_list) if __name__ == "__main__": main()