import logging from dataclasses import dataclass, field from functools import cached_property from typing import Dict, List import numpy as np import polars as pl import torch from yambda.constants import Constants from yambda.processing import timesplit logger = logging.getLogger(__name__) @dataclass class Data: train: pl.LazyFrame validation: pl.LazyFrame | None test: pl.LazyFrame item_id_to_idx: dict[int, int] _train_user_ids: torch.Tensor | None = field(init=False, default=None) @property def num_items(self): return len(self.item_id_to_idx) @cached_property def num_train_users(self): return self.train.select(pl.len()).collect(engine="streaming").item() def train_user_ids(self, device): if self._train_user_ids is None or self._train_user_ids.device != device: self._train_user_ids = self.train.select('uid').collect(engine="streaming")['uid'].to_torch().to(device) return self._train_user_ids def preprocess(df: pl.LazyFrame, interaction: str, val_size=Constants.VAL_SIZE, max_seq_len: int = 200) -> Data: """ Preprocesses raw interaction data for recommendation system modeling. Args: df (pl.LazyFrame): Raw input data containing user interaction sequences interaction (str): Type of interaction to process. Must be either 'likes' or 'listens'. val_size (float): Proportion of data to use for validation (default: from Constants) Returns: Data: Named tuple containing: - train (pl.LazyFrame): Training data - val (pl.LazyFrame): Validation data - test (pl.LazyFrame): Test data - item_id_to_idx (dict): Mapping from original item IDs to model indices Note: - For 'listens' interactions, uses strict engagement threshold - Item indices start at 1 to reserve 0 for padding/masking """ if interaction == 'listens': df = df.select( 'uid', pl.col('item_id', 'timestamp').list.gather( pl.col('played_ratio_pct').list.eval(pl.arg_where(pl.element() >= Constants.TRACK_LISTEN_THRESHOLD)) ), ).filter(pl.col('item_id').list.len() > 0) unique_item_ids = ( df.select(pl.col("item_id").explode().unique().sort()).collect(engine="streaming")["item_id"].to_list() ) item_id_to_idx = {int(item_id): i + 1 for i, item_id in enumerate(unique_item_ids)} train, val, test = timesplit.sequential_split_train_val_test( df, val_size=val_size, test_timestamp=Constants.TEST_TIMESTAMP, drop_non_train_items=False ) def replace_strict(df): return ( df.select( pl.col("item_id").list.eval(pl.element().replace_strict(item_id_to_idx)), pl.all().exclude("item_id"), ) .collect(engine="streaming") .lazy() ) # polars requires too much memory for replace strict if list is too big train = train.select('uid', pl.all().exclude('uid').list.slice(-max_seq_len, max_seq_len)) train = replace_strict(train) if val is not None: val = replace_strict(val) test = replace_strict(test) return Data(train, val, test, item_id_to_idx) class TrainDataset: def __init__(self, dataset: pl.DataFrame, num_items: int, max_seq_len: int): self._dataset = dataset self._num_items = num_items self._max_seq_len = max_seq_len @property def dataset(self) -> pl.DataFrame: return self._dataset def __len__(self) -> int: return len(self._dataset) def __getitem__(self, index: int) -> Dict[str, List[int] | int]: sample = self._dataset.row(index, named=True) item_sequence = sample['item_id'][:-1][-self._max_seq_len :] positive_sequence = sample['item_id'][1:][-self._max_seq_len :] negative_sequence = np.random.randint(1, self._num_items + 1, size=(len(item_sequence),)).tolist() return { 'user.ids': [sample['uid']], 'user.length': 1, 'item.ids': item_sequence, 'item.length': len(item_sequence), 'positive.ids': positive_sequence, 'positive.length': len(positive_sequence), 'negative.ids': negative_sequence, 'negative.length': len(negative_sequence), } class EvalDataset: def __init__(self, dataset: pl.DataFrame, max_seq_len: int): self._dataset = dataset self._max_seq_len = max_seq_len @property def dataset(self) -> pl.DataFrame: return self._dataset def __len__(self) -> int: return len(self._dataset) def __getitem__(self, index: int) -> Dict[str, List[int] | int]: sample = self._dataset.row(index, named=True) item_sequence = sample['item_id_train'][-self._max_seq_len :] next_items = sample['item_id_valid'] return { 'user.ids': [sample['uid']], 'user.length': 1, 'item.ids': item_sequence, 'item.length': len(item_sequence), 'labels.ids': next_items, 'labels.length': len(next_items), } def collate_fn(batch: List[Dict]) -> Dict[str, torch.Tensor]: """ Collates a batch of samples into batched tensors suitable for model input. This function processes a list of dictionaries, each containing keys like '{prefix}.ids' and '{prefix}.length' (the length of the sequence for that prefix). For each such prefix, it: - Concatenates all '{prefix}.ids' lists from the batch into a single flat list. - Collects all '{prefix}.length' values into a list. - Converts the resulting lists into torch.LongTensor objects. Args: batch (List[Dict]): List of sample dictionaries. Each sample must contain keys of the form '{prefix}.ids' (list of ints) and '{prefix}.length' (int). Returns: Dict[str, torch.Tensor]: Dictionary with keys '{prefix}.ids' and '{prefix}.length' for each prefix, where values are 1D torch.LongTensor objects suitable for model input. """ processed_batch = {} for key in batch[0].keys(): if key.endswith('.ids'): prefix = key.split('.')[0] assert '{}.length'.format(prefix) in batch[0] processed_batch[f'{prefix}.ids'] = [] processed_batch[f'{prefix}.length'] = [] for sample in batch: processed_batch[f'{prefix}.ids'].extend(sample[f'{prefix}.ids']) processed_batch[f'{prefix}.length'].append(sample[f'{prefix}.length']) for part, values in processed_batch.items(): processed_batch[part] = torch.tensor(values, dtype=torch.long) return processed_batch