import logging import pathlib as Path import random import click import numpy as np import polars as pl import torch from model import SASRecEncoder from torch.utils.data import DataLoader from data import Data, EvalDataset, collate_fn, preprocess from yambda.evaluation.metrics import calc_metrics from yambda.evaluation.ranking import Embeddings, Targets, rank_items logging.basicConfig( level=logging.DEBUG, format='[%(asctime)s] [%(levelname)s]: %(message)s', datefmt='%Y-%m-%d %H:%M:%S' ) logger = logging.getLogger(__name__) def infer_users(eval_dataloader: DataLoader, model: torch.nn.Module, device: str): user_ids = [] user_embeddings = [] model.eval() for batch in eval_dataloader: for key in batch.keys(): batch[key] = batch[key].to(device) user_ids.append(batch['user.ids']) # (batch_size) user_embeddings.append(model(batch)) # (batch_size, embedding_dim) return torch.cat(user_ids, dim=0), torch.cat(user_embeddings, dim=0) def infer_items(model: SASRecEncoder): return model.item_embeddings.weight.data @click.command() @click.option('--exp_name', required=True, type=str) @click.option('--data_dir', required=True, type=str, default='../../data/', show_default=True) @click.option( '--size', required=True, type=click.Choice(['50m', '500m', '5b']), default='50m', show_default=True, ) @click.option( '--interaction', required=True, type=click.Choice(['likes', 'listens']), default='likes', show_default=True, ) @click.option('--batch_size', required=True, type=int, default=256, show_default=True) @click.option('--max_seq_len', required=False, type=int, default=200, show_default=True) @click.option('--seed', required=False, type=int, default=42, show_default=True) @click.option('--device', required=True, type=str, default='cuda:0', show_default=True) def main( exp_name: str, data_dir: str, size: str, interaction: str, batch_size: int, max_seq_len: int, seed: int, device: str, ): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.set_float32_matmul_precision('high') path = Path.Path(data_dir) / 'sequential' / size / interaction df = pl.scan_parquet(path.with_suffix('.parquet')) logger.debug('Preprocessing data...') data: Data = preprocess(df, interaction, val_size=0, max_seq_len=max_seq_len) train_df = data.train.collect(engine="streaming") eval_df = data.test.collect(engine="streaming") logger.debug('Preprocessing data has finished!') eval_df = train_df.join(eval_df, on='uid', how='inner', suffix='_valid').select( pl.col('uid'), pl.col('item_id').alias('item_id_train'), pl.col('item_id_valid') ) eval_dataset = EvalDataset(dataset=eval_df, max_seq_len=max_seq_len) eval_dataloader = DataLoader( dataset=eval_dataset, batch_size=batch_size, collate_fn=collate_fn, drop_last=False, shuffle=True, ) model = torch.load(f'./checkpoints/{exp_name}_best_state.pth', weights_only=False).to(device) model.eval() with torch.inference_mode(): user_ids, user_embeddings = infer_users(eval_dataloader=eval_dataloader, model=model, device=device) item_embeddings = infer_items(model=model) item_embeddings = Embeddings( ids=torch.arange(start=0, end=item_embeddings.shape[0], device=device), embeddings=item_embeddings ) user_embeddings = Embeddings(ids=user_ids, embeddings=user_embeddings) df_user_ids = torch.tensor(eval_df['uid'].to_list(), dtype=torch.long, device=device) df_target_ids = [ torch.tensor(item_ids, dtype=torch.long, device=device) for item_ids in eval_df['item_id_valid'].to_list() ] targets = Targets(user_ids=df_user_ids, item_ids=df_target_ids) with torch.no_grad(): ranked = rank_items(users=user_embeddings, items=item_embeddings, num_items=100) metric_names = [f'{name}@{k}' for name in ["recall", "ndcg", "coverage"] for k in [10, 50, 100]] metrics = calc_metrics(ranked, targets, metrics=metric_names) print(metrics) if __name__ == '__main__': main()