import logging import os import pathlib as Path import random import click import numpy as np import polars as pl import torch from model import SASRecEncoder from torch.utils.data import DataLoader from data import Data, TrainDataset, collate_fn, preprocess logging.basicConfig( level=logging.DEBUG, format='[%(asctime)s] [%(levelname)s]: %(message)s', datefmt='%Y-%m-%d %H:%M:%S' ) logger = logging.getLogger(__name__) def train( train_dataloader: DataLoader, model: SASRecEncoder, optimizer: torch.optim.Optimizer, device: str = 'cpu', num_epochs: int = 100, ): logger.debug('Start training...') model.train() for epoch_num in range(num_epochs): logger.debug(f'Start epoch {epoch_num + 1}') for batch in train_dataloader: for key in batch.keys(): batch[key] = batch[key].to(device) loss = model(batch) optimizer.zero_grad() loss.backward() optimizer.step() logger.debug('Training procedure has been finished!') return model.state_dict() @click.command() @click.option('--exp_name', required=True, type=str) @click.option('--data_dir', required=True, type=str, default='../../data/', show_default=True) @click.option('--checkpoint_dir', required=True, type=str, default='./checkpoints/', show_default=True) @click.option( '--size', required=True, type=click.Choice(['50m', '500m', '5b']), default='50m', show_default=True, ) @click.option( '--interaction', required=True, type=click.Choice(['likes', 'listens']), default='likes', show_default=True, ) @click.option('--batch_size', required=True, type=int, default=256, show_default=True) @click.option('--max_seq_len', required=False, type=int, default=200, show_default=True) @click.option('--embedding_dim', required=False, type=int, default=64, show_default=True) @click.option('--num_heads', required=False, type=int, default=2, show_default=True) @click.option('--num_layers', required=False, type=int, default=2, show_default=True) @click.option('--learning_rate', required=False, type=float, default=1e-3, show_default=True) @click.option('--dropout', required=False, type=float, default=0.0, show_default=True) @click.option('--seed', required=False, type=int, default=42, show_default=True) @click.option('--device', required=True, type=str, default='cuda:0', show_default=True) @click.option('--num_epochs', required=True, type=int, default=100, show_default=True) def main( exp_name: str, data_dir: str, checkpoint_dir: str, size: str, interaction: str, batch_size: int, max_seq_len: int, embedding_dim: int, num_heads: int, num_layers: int, learning_rate: float, dropout: float, seed: int, device: str, num_epochs: int, ): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.set_float32_matmul_precision('high') data_path = Path.Path(data_dir) / 'sequential' / size / interaction df = pl.scan_parquet(data_path.with_suffix('.parquet')) checkpoint_path = Path.Path(checkpoint_dir) / f'{exp_name}_best_state.pth' os.makedirs(checkpoint_dir, exist_ok=True) logger.debug('Preprocessing data...') data: Data = preprocess(df, interaction, val_size=0, max_seq_len=max_seq_len) train_df = data.train.collect(engine="streaming") logger.debug('Preprocessing data has finished!') train_dataset = TrainDataset(dataset=train_df, num_items=data.num_items, max_seq_len=max_seq_len) train_dataloader = DataLoader( dataset=train_dataset, batch_size=batch_size, collate_fn=collate_fn, drop_last=True, shuffle=True, num_workers=3, prefetch_factor=10, pin_memory_device="cuda", pin_memory=True, ) model = SASRecEncoder( num_items=data.num_items, max_sequence_length=max_seq_len, embedding_dim=embedding_dim, num_heads=num_heads, num_layers=num_layers, dropout=dropout, ).to(device) optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) best_checkpoint = train( train_dataloader=train_dataloader, model=model, optimizer=optimizer, device=device, num_epochs=num_epochs ) logger.debug('Saving model...') os.makedirs(checkpoint_dir, exist_ok=True) model.load_state_dict(best_checkpoint) torch.save(model, checkpoint_path) logger.debug(f'Saved model as {checkpoint_path}') if __name__ == '__main__': main()