--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: modernbert-topics-1m results: [] --- # modernbert-topics-1m This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5923 - Accuracy: 0.7949 - F1: 0.7948 - Worst Group Accuracy: 0.5723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 1024 - total_eval_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Worst Group Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:--------------------:| | 6.7028 | 0.5223 | 500 | 0.8360 | 0.7279 | 0.7269 | 0.4539 | | 2.9939 | 1.0439 | 1000 | 0.7108 | 0.7635 | 0.7632 | 0.5876 | | 2.625 | 1.5662 | 1500 | 0.6393 | 0.7785 | 0.7778 | 0.6283 | | 2.425 | 2.0878 | 2000 | 0.6043 | 0.7886 | 0.7880 | 0.6098 | | 2.2422 | 2.6101 | 2500 | 0.5870 | 0.7908 | 0.7902 | 0.6272 | | 2.158 | 3.1316 | 3000 | 0.5723 | 0.7944 | 0.7939 | 0.6427 | | 1.9898 | 3.6540 | 3500 | 0.5684 | 0.7947 | 0.7945 | 0.6595 | | 1.8709 | 4.1755 | 4000 | 0.6023 | 0.7941 | 0.7938 | 0.6061 | | 1.6459 | 4.6978 | 4500 | 0.5923 | 0.7949 | 0.7948 | 0.5723 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1