--- base_model: d0rj/rut5-base-summ tags: - generated_from_trainer metrics: - rouge model-index: - name: summary_vacancy results: [] --- # summary_vacancy This model is a fine-tuned version of [d0rj/rut5-base-summ](https://huggingface.co/d0rj/rut5-base-summ) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9030 - Rouge1: 0.2908 - Rouge2: 0.0952 - Rougel: 0.2728 - Rougelsum: 0.2728 - Gen Len: 65.6667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 60 | 2.7805 | 0.4024 | 0.1111 | 0.3511 | 0.3511 | 70.3333 | | No log | 2.0 | 120 | 2.7797 | 0.1746 | 0.0 | 0.127 | 0.127 | 34.3333 | | No log | 3.0 | 180 | 2.7807 | 0.2222 | 0.0 | 0.1746 | 0.1746 | 38.0 | | No log | 4.0 | 240 | 2.7872 | 0.3966 | 0.1524 | 0.349 | 0.349 | 46.6667 | | No log | 5.0 | 300 | 2.7995 | 0.2758 | 0.1176 | 0.2758 | 0.2758 | 50.3333 | | No log | 6.0 | 360 | 2.8120 | 0.2758 | 0.1176 | 0.2758 | 0.2758 | 49.3333 | | No log | 7.0 | 420 | 2.8270 | 0.2758 | 0.1176 | 0.2758 | 0.2758 | 51.0 | | No log | 8.0 | 480 | 2.8371 | 0.2758 | 0.1176 | 0.2758 | 0.2758 | 47.6667 | | 1.9576 | 9.0 | 540 | 2.8480 | 0.2728 | 0.1143 | 0.2728 | 0.2728 | 73.3333 | | 1.9576 | 10.0 | 600 | 2.8573 | 0.2804 | 0.1333 | 0.2804 | 0.2804 | 63.6667 | | 1.9576 | 11.0 | 660 | 2.8661 | 0.2888 | 0.1333 | 0.2888 | 0.2888 | 48.6667 | | 1.9576 | 12.0 | 720 | 2.8718 | 0.2787 | 0.1081 | 0.2787 | 0.2787 | 51.0 | | 1.9576 | 13.0 | 780 | 2.8786 | 0.1075 | 0.0 | 0.1075 | 0.1075 | 49.6667 | | 1.9576 | 14.0 | 840 | 2.8817 | 0.2827 | 0.1333 | 0.2827 | 0.2827 | 57.3333 | | 1.9576 | 15.0 | 900 | 2.8865 | 0.293 | 0.1333 | 0.293 | 0.293 | 39.0 | | 1.9576 | 16.0 | 960 | 2.8900 | 0.2997 | 0.1333 | 0.2997 | 0.2997 | 57.6667 | | 1.7164 | 17.0 | 1020 | 2.8941 | 0.2997 | 0.1333 | 0.2997 | 0.2997 | 71.6667 | | 1.7164 | 18.0 | 1080 | 2.8968 | 0.2997 | 0.1143 | 0.2997 | 0.2997 | 76.3333 | | 1.7164 | 19.0 | 1140 | 2.8983 | 0.293 | 0.1143 | 0.275 | 0.275 | 88.6667 | | 1.7164 | 20.0 | 1200 | 2.8998 | 0.3194 | 0.0926 | 0.3019 | 0.3019 | 77.3333 | | 1.7164 | 21.0 | 1260 | 2.9005 | 0.2908 | 0.0952 | 0.2728 | 0.2728 | 65.6667 | | 1.7164 | 22.0 | 1320 | 2.9020 | 0.2908 | 0.0952 | 0.2728 | 0.2728 | 65.6667 | | 1.7164 | 23.0 | 1380 | 2.9027 | 0.2908 | 0.0952 | 0.2728 | 0.2728 | 65.6667 | | 1.7164 | 24.0 | 1440 | 2.9026 | 0.2908 | 0.0952 | 0.2728 | 0.2728 | 65.6667 | | 1.647 | 25.0 | 1500 | 2.9030 | 0.2908 | 0.0952 | 0.2728 | 0.2728 | 65.6667 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2