davidmcmahon commited on
Commit
35d6293
·
verified ·
1 Parent(s): ac4bc13

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +22 -21
README.md CHANGED
@@ -6,38 +6,39 @@ tags:
6
  - guardrail
7
  - content-filtering
8
  - prompt-detection
 
9
  license: mit
10
  ---
 
11
  # Omega Guard - Advanced LLM Prompt Safety Classifier
12
 
13
  ## Model Overview
14
  Omega Guard is a sophisticated machine learning model designed to detect potentially harmful or malicious prompts in natural language interactions.
15
 
16
- ## Compatibility Note
17
- This model has been specifically serialized for compatibility with:
18
- - scikit-learn: 1.3.2
19
- - numpy: 1.26.4
20
- - Serialization protocol: 2
21
 
22
- ## Key Features
23
  - Advanced text and feature-based classification
24
  - Comprehensive malicious prompt detection
25
  - Multi-level security pattern recognition
26
- - Scikit-learn compatible
27
-
28
- ## Performance Highlights
29
- - Extensive training on diverse prompt datasets
30
- - Robust feature engineering
31
- - High accuracy in identifying security risks
32
 
33
- ## Recommended Use
34
  - Content moderation
35
  - Prompt safety filtering
36
- - AI interaction security
37
-
38
- ## Technical Details
39
- - Classification Algorithm: Random Forest
40
- - Feature Types:
41
- * TF-IDF text vectorization
42
- * Security pattern detection
43
- * Composite feature analysis
 
 
 
 
 
 
6
  - guardrail
7
  - content-filtering
8
  - prompt-detection
9
+ - machine-learning
10
  license: mit
11
  ---
12
+
13
  # Omega Guard - Advanced LLM Prompt Safety Classifier
14
 
15
  ## Model Overview
16
  Omega Guard is a sophisticated machine learning model designed to detect potentially harmful or malicious prompts in natural language interactions.
17
 
18
+ ## Technical Specifications
19
+ - **Python Version**: 3.11.9 | packaged by conda-forge | (main, Apr 19 2024, 18:36:13) [GCC 12.3.0]
20
+ - **Scikit-learn Version**: 1.6.1
21
+ - **NumPy Version**: 1.26.4
 
22
 
23
+ ## Model Capabilities
24
  - Advanced text and feature-based classification
25
  - Comprehensive malicious prompt detection
26
  - Multi-level security pattern recognition
27
+ - Scikit-learn compatible Random Forest classifier
 
 
 
 
 
28
 
29
+ ## Use Cases
30
  - Content moderation
31
  - Prompt safety filtering
32
+ - AI interaction security screening
33
+
34
+ ## Licensing
35
+ This model is released under the MIT License.
36
+
37
+ ## Recommended Usage
38
+ Carefully evaluate and test the model in your specific use case. This is a machine learning model and may have limitations or biases.
39
+
40
+ ## Performance Metrics
41
+ Please refer to the `performance_report.txt` for detailed classification performance.
42
+
43
+ ## Contact
44
+ For more information or issues, please open a GitHub issue.