|
import argparse |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments |
|
import transformers |
|
from peft import LoraConfig, get_peft_model |
|
from datasets import load_dataset |
|
from transformers.trainer_callback import TrainerCallback |
|
import os |
|
import random |
|
import subprocess |
|
from huggingface_hub import HfApi, hf_hub_download |
|
|
|
def generate_mmlu_slurm(model_path, hub_model_id, output_dir, num_gpus=1): |
|
model_short_name = model_path.split('/')[-1] |
|
filename = f"run_mmlu_{model_short_name}.sbatch" |
|
|
|
port = random.randint(10000, 65535) |
|
|
|
content = f"""#!/bin/bash |
|
#SBATCH --nodes=1 |
|
#SBATCH --gpus-per-node={num_gpus} |
|
#SBATCH --time=24:00:00 |
|
#SBATCH --job-name={port}_mmlu_{model_short_name} |
|
#SBATCH --mail-user=mailto:[email protected] |
|
#SBATCH --mail-type=ALL |
|
|
|
source /opt/rh/devtoolset-10/enable |
|
source /data/davis_brown/miniconda3/bin/activate |
|
conda init |
|
conda activate quip |
|
|
|
CUDA_VISIBLE_DEVICES=0 lm_eval \\ |
|
--model hf \\ |
|
--model_args pretrained={model_path},parallelize=True,peft={hub_model_id} \\ |
|
--tasks mmlu \\ |
|
--device cuda:0 \\ |
|
--batch_size 8 \\ |
|
--output_path={output_dir}/{hub_model_id} \\ |
|
--num_fewshot 5 |
|
""" |
|
|
|
with open(filename, 'w') as f: |
|
f.write(content) |
|
|
|
print(f"Generated MMLU evaluation SLURM script: {filename}") |
|
return filename |
|
|
|
def launch_mmlu_evaluation(model_path, hub_model_id, output_dir): |
|
slurm_script = generate_mmlu_slurm(model_path, hub_model_id, output_dir) |
|
try: |
|
subprocess.run(["sbatch", slurm_script], check=True) |
|
print(f"Submitted MMLU evaluation job: {slurm_script}") |
|
except subprocess.CalledProcessError as e: |
|
print(f"Failed to submit MMLU evaluation job: {e}") |
|
|
|
|
|
class PushToHubCallback(TrainerCallback): |
|
def __init__(self, trainer, push_frequency): |
|
self.trainer = trainer |
|
self.push_frequency = push_frequency |
|
|
|
def on_step_end(self, args, state, control, **kwargs): |
|
if state.global_step % self.push_frequency == 0: |
|
self.trainer.save_model() |
|
self.trainer.push_to_hub( |
|
commit_message=f"Training in progress - Step {state.global_step}" |
|
) |
|
def main(args): |
|
if args.only_mmlu: |
|
launch_mmlu_evaluation(args.model_id, args.hub_model_id, args.output_dir) |
|
return |
|
|
|
model_id = args.model_id |
|
output_dir = args.output_dir |
|
hub_model_id = args.hub_model_id |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype="auto", low_cpu_mem_usage=True) |
|
|
|
target_modules = ['q_proj','k_proj','v_proj','o_proj','gate_proj','down_proj','up_proj', ] |
|
|
|
config = LoraConfig( |
|
r=args.lora_rank, |
|
lora_alpha=args.lora_rank, |
|
target_modules=target_modules, |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
use_rslora=True |
|
) |
|
|
|
model = get_peft_model(model, config) |
|
model.print_trainable_parameters() |
|
model.enable_input_require_grads() |
|
|
|
|
|
data = load_dataset("open-web-math/open-web-math") |
|
|
|
|
|
max_seq_length = args.max_seq_length |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.model_max_length = max_seq_length |
|
|
|
def preprocess_function(examples): |
|
return tokenizer(examples["text"], truncation=True, max_length=max_seq_length, padding="max_length") |
|
|
|
processed_dataset = data["train"].map(preprocess_function, batched=True) |
|
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
torch.cuda.empty_cache() |
|
trainer = transformers.Trainer( |
|
model=model, |
|
train_dataset=processed_dataset, |
|
args=TrainingArguments( |
|
per_device_train_batch_size=args.batch_size, |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
gradient_checkpointing=True, |
|
warmup_steps=200, |
|
max_steps=args.max_steps, |
|
learning_rate=2e-4, |
|
bf16=True, |
|
logging_steps=25, |
|
output_dir=output_dir, |
|
optim="adamw_bnb_8bit", |
|
logging_first_step=True, |
|
push_to_hub=True, |
|
hub_model_id=hub_model_id, |
|
), |
|
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False), |
|
) |
|
model.config.use_cache = False |
|
|
|
push_frequency = 100 |
|
trainer.add_callback(PushToHubCallback(trainer, push_frequency, hub_model_id)) |
|
|
|
trainer.train() |
|
|
|
final_commit_hash = trainer.push_to_hub("Training complete") |
|
print(f"Training complete. Final commit hash: {final_commit_hash}") |
|
|
|
|
|
if args.run_mmlu: |
|
launch_mmlu_evaluation(model_id, hub_model_id, output_dir) |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Fine-tune a language model and/or run MMLU evaluation") |
|
parser.add_argument("--model_id", type=str, default="ISTA-DASLab/Meta-Llama-3-8B-Instruct-AQLM-2Bit-1x16", |
|
help="Model ID to fine-tune or evaluate") |
|
parser.add_argument("--max_seq_length", type=int, default=2048, help="Maximum sequence length") |
|
parser.add_argument("--output_dir", type=str, required=True, help="Output directory for checkpoints and results") |
|
parser.add_argument("--hub_model_id", type=str, |
|
default="davisrbr/ISTA-DASLab-Meta-Llama-3-8B-Instruct-AQLM-2Bit-1x16-hf-100000_r8_cont", |
|
help="Hub model ID for pushing or LoRA weights") |
|
parser.add_argument("--batch_size", type=int, default=1, help="Per-device batch size") |
|
parser.add_argument("--gradient_accumulation_steps", type=int, default=8, help="Gradient accumulation steps") |
|
parser.add_argument("--max_steps", type=int, default=50000, help="Maximum number of training steps") |
|
parser.add_argument("--run_mmlu", action="store_true", help="Run MMLU evaluation after training") |
|
parser.add_argument("--lora_rank", type=int, default=8, help="Rank of LoRA adaptation") |
|
parser.add_argument("--only_mmlu", action="store_true", help="Only run MMLU evaluation without training") |
|
parser.add_argument("--launch_slurm", action="store_true", help="Launch the entire script as a SLURM job") |
|
parser.add_argument("--num_gpus", type=int, default=4, help="Number of GPUs to use for training") |
|
parser.add_argument("--commit_hash", type=str, help="Specific commit hash to evaluate (for MMLU only)") |
|
|
|
args = parser.parse_args() |
|
main(args) |