File size: 1,646 Bytes
82029ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
library_name: peft
tags:
- trl
- dpo
- generated_from_trainer
base_model: sablo/sablo-pebble-mistral
model-index:
- name: sablo-pebble-mistral-dpo-lora-oasst2_dpo_pairs_en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sablo-pebble-mistral-dpo-lora-oasst2_dpo_pairs_en
This model is a fine-tuned version of [sablo/sablo-pebble-mistral](https://huggingface.co/sablo/sablo-pebble-mistral) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6714
- Rewards/chosen: 0.1838
- Rewards/rejected: 0.0314
- Rewards/accuracies: 0.6875
- Rewards/margins: 0.1524
- Logps/rejected: -267.5412
- Logps/chosen: -312.9823
- Logits/rejected: -2.2363
- Logits/chosen: -2.2654
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.14.6
- Tokenizers 0.15.1 |