File size: 1,997 Bytes
c4eae0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67f403b
 
 
 
c4eae0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67f403b
c4eae0a
 
 
 
 
 
67f403b
 
 
c4eae0a
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
library_name: peft
license: apache-2.0
base_model: ministral/Ministral-3b-instruct
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: ministral-3b-instruct-mimic4-adapt
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ministral-3b-instruct-mimic4-adapt

This model is a fine-tuned version of [ministral/Ministral-3b-instruct](https://huggingface.co/ministral/Ministral-3b-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2631
- Model Preparation Time: 0.0126
- Accuracy: 0.5672
- Perplexity: 9.6125

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Model Preparation Time | Accuracy | Perplexity |
|:-------------:|:------:|:-----:|:---------------:|:----------------------:|:--------:|:----------:|
| 2.3634        | 1.0    | 30565 | 2.3471          | 0.0126                 | 0.5535   | 10.4554    |
| 2.381         | 2.0    | 61130 | 2.2835          | 0.0126                 | 0.5619   | 9.8107     |
| 2.3067        | 2.9999 | 91692 | 2.2631          | 0.0126                 | 0.5672   | 9.6125     |


### Framework versions

- PEFT 0.15.2
- Transformers 4.49.0
- Pytorch 2.6.0
- Datasets 3.6.0
- Tokenizers 0.21.1