File size: 1,997 Bytes
c4eae0a 67f403b c4eae0a 67f403b c4eae0a 67f403b c4eae0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
library_name: peft
license: apache-2.0
base_model: ministral/Ministral-3b-instruct
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: ministral-3b-instruct-mimic4-adapt
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ministral-3b-instruct-mimic4-adapt
This model is a fine-tuned version of [ministral/Ministral-3b-instruct](https://huggingface.co/ministral/Ministral-3b-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2631
- Model Preparation Time: 0.0126
- Accuracy: 0.5672
- Perplexity: 9.6125
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy | Perplexity |
|:-------------:|:------:|:-----:|:---------------:|:----------------------:|:--------:|:----------:|
| 2.3634 | 1.0 | 30565 | 2.3471 | 0.0126 | 0.5535 | 10.4554 |
| 2.381 | 2.0 | 61130 | 2.2835 | 0.0126 | 0.5619 | 9.8107 |
| 2.3067 | 2.9999 | 91692 | 2.2631 | 0.0126 | 0.5672 | 9.6125 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.49.0
- Pytorch 2.6.0
- Datasets 3.6.0
- Tokenizers 0.21.1 |