File size: 2,061 Bytes
f6644b6 a03b19a f6644b6 a03b19a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
language:
- ar
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
- google/fleurs
- ymoslem/MediaSpeech
metrics:
- wer
model-index:
- name: Whisper Base ar
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_17_0
config: ar
split: test
args: ar
metrics:
- name: Wer
type: wer
value: 62.6842346347641
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Base ar
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5272
- Wer: 62.6842
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.3483 | 0.2 | 1000 | 2.0647 | 67.7943 |
| 0.1912 | 1.0454 | 2000 | 2.3245 | 65.8907 |
| 0.131 | 1.2454 | 3000 | 2.4512 | 63.3511 |
| 0.0954 | 2.0908 | 4000 | 2.4555 | 62.8998 |
| 0.0711 | 2.2908 | 5000 | 2.5272 | 62.6842 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |