File size: 2,592 Bytes
e276d91 746d0a9 e276d91 746d0a9 e276d91 746d0a9 e276d91 746d0a9 04b34f7 746d0a9 5407e8c 04b34f7 e276d91 940f046 e276d91 04b34f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
base_model: openai/whisper-base
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper Medium en
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_17_0
config: en
split: test
args: en
metrics:
- type: wer
value: 19.814275123347905
name: Wer
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: en_us
split: test
metrics:
- type: wer
value: 14
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: facebook/voxpopuli
type: facebook/voxpopuli
config: en
split: test
metrics:
- type: wer
value: 13.25
name: WER
pipeline_tag: automatic-speech-recognition
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Base en
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5062
- Wer: 19.8143
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.3654 | 1.0974 | 1000 | 0.5075 | 20.6605 |
| 0.2314 | 3.0922 | 2000 | 0.5117 | 20.1370 |
| 0.261 | 5.087 | 3000 | 0.5058 | 20.1230 |
| 0.1793 | 7.0818 | 4000 | 0.5196 | 20.5831 |
| 0.2344 | 9.0766 | 5000 | 0.5062 | 19.8143 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |