--- language: - en license: apache-2.0 tags: - generated_from_trainer base_model: openai/whisper-base datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Medium en results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: en split: test args: en metrics: - type: wer value: 19.814275123347905 name: Wer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: en_us split: test metrics: - type: wer value: 14 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: facebook/voxpopuli type: facebook/voxpopuli config: en split: test metrics: - type: wer value: 13.25 name: WER pipeline_tag: automatic-speech-recognition --- # Whisper Base en This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5062 - Wer: 19.8143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3654 | 1.0974 | 1000 | 0.5075 | 20.6605 | | 0.2314 | 3.0922 | 2000 | 0.5117 | 20.1370 | | 0.261 | 5.087 | 3000 | 0.5058 | 20.1230 | | 0.1793 | 7.0818 | 4000 | 0.5196 | 20.5831 | | 0.2344 | 9.0766 | 5000 | 0.5062 | 19.8143 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1