--- license: openrail datasets: - deepghs/anime_real_cls metrics: - f1 - accuracy pipeline_tag: image-classification tags: - art --- | Name | FLOPS | Params | Accuracy | AUC | Confusion | Labels | |:---------------------------:|:-------:|:--------:|:----------:|:------:|:-------------------------------------------------------------------------------------------------------------------:|:---------------:| | caformer_s36_v1.3_fixed | 22.10G | 37.21M | 99.08% | 0.9989 | [confusion](https://huggingface.co/deepghs/anime_real_cls/blob/main/caformer_s36_v1.3_fixed/plot_confusion.png) | `anime`, `real` | | caformer_s36_v1.3_fp32 | 22.10G | 37.21M | 99.08% | 0.9987 | [confusion](https://huggingface.co/deepghs/anime_real_cls/blob/main/caformer_s36_v1.3_fp32/plot_confusion.png) | `anime`, `real` | | mobilenetv3_v1.3_dist | 0.63G | 4.18M | 98.29% | 0.9977 | [confusion](https://huggingface.co/deepghs/anime_real_cls/blob/main/mobilenetv3_v1.3_dist/plot_confusion.png) | `anime`, `real` | | caformer_s36_v1.3 | 22.10G | 37.21M | 99.06% | 0.9987 | [confusion](https://huggingface.co/deepghs/anime_real_cls/blob/main/caformer_s36_v1.3/plot_confusion.png) | `anime`, `real` | | caformer_s36_v1.3_ls0.1 | 22.10G | 37.21M | 99.10% | 0.9972 | [confusion](https://huggingface.co/deepghs/anime_real_cls/blob/main/caformer_s36_v1.3_ls0.1/plot_confusion.png) | `anime`, `real` | | mobilenetv3_v1.2_dist | 0.63G | 4.18M | 98.63% | 0.9984 | [confusion](https://huggingface.co/deepghs/anime_real_cls/blob/main/mobilenetv3_v1.2_dist/plot_confusion.png) | `anime`, `real` | | caformer_s36_v1.2 | 22.10G | 37.21M | 99.08% | 0.999 | [confusion](https://huggingface.co/deepghs/anime_real_cls/blob/main/caformer_s36_v1.2/plot_confusion.png) | `anime`, `real` | | mobilenetv3_v1.1_dist_ls0.1 | 0.63G | 4.18M | 98.57% | 0.9969 | [confusion](https://huggingface.co/deepghs/anime_real_cls/blob/main/mobilenetv3_v1.1_dist_ls0.1/plot_confusion.png) | `anime`, `real` | | caformer_s36_v1.1_ls0.1 | 22.10G | 37.21M | 99.03% | 0.9979 | [confusion](https://huggingface.co/deepghs/anime_real_cls/blob/main/caformer_s36_v1.1_ls0.1/plot_confusion.png) | `anime`, `real` | | caformer_s36_v1.1 | 22.10G | 37.21M | 98.51% | 0.9971 | [confusion](https://huggingface.co/deepghs/anime_real_cls/blob/main/caformer_s36_v1.1/plot_confusion.png) | `anime`, `real` | | caformer_s36_v1 | 22.10G | 37.21M | 98.90% | 0.9986 | [confusion](https://huggingface.co/deepghs/anime_real_cls/blob/main/caformer_s36_v1/plot_confusion.png) | `anime`, `real` | | mobilenetv3_v1_dist_ls0.1 | 0.63G | 4.18M | 98.77% | 0.998 | [confusion](https://huggingface.co/deepghs/anime_real_cls/blob/main/mobilenetv3_v1_dist_ls0.1/plot_confusion.png) | `anime`, `real` | | caformer_s36_v1_ls0.1 | 22.10G | 37.21M | 99.18% | 0.9981 | [confusion](https://huggingface.co/deepghs/anime_real_cls/blob/main/caformer_s36_v1_ls0.1/plot_confusion.png) | `anime`, `real` | | mobilenetv3_v0_dist | 0.63G | 4.18M | 99.14% | 0.9986 | [confusion](https://huggingface.co/deepghs/anime_real_cls/blob/main/mobilenetv3_v0_dist/plot_confusion.png) | `anime`, `real` | | caformer_s36_v0 | 22.10G | 37.21M | 99.34% | 0.9988 | [confusion](https://huggingface.co/deepghs/anime_real_cls/blob/main/caformer_s36_v0/plot_confusion.png) | `anime`, `real` | ``` import json import numpy as np from PIL import Image from imgutils.data import load_image, rgb_encode from onnxruntime import InferenceSession, SessionOptions, GraphOptimizationLevel class Anime_Real_Cls(): def __init__(self, model_dir): model_path = f'{model_dir}/model.onnx' self.model = self.load_local_onnx_model(model_path) with open(f'{model_dir}/meta.json', 'r') as f: self.labels = json.load(f)['labels'] def _img_encode(self, image_path, size=(384, 384), normalize=(0.5, 0.5)): image = Image.open(image_path) image = load_image(image, mode='RGB') image = image.resize(size, Image.BILINEAR) data = rgb_encode(image, order_='CHW') if normalize: mean_, std_ = normalize mean = np.asarray([mean_]).reshape((-1, 1, 1)) std = np.asarray([std_]).reshape((-1, 1, 1)) data = (data - mean) / std return data.astype(np.float32) def load_local_onnx_model(self, model_path: str) -> InferenceSession: options = SessionOptions() options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL return InferenceSession(model_path, options) def __call__(self, image_path): input_ = self._img_encode(image_path, size=(384, 384))[None, ...] output, = self.model.run(['output'], {'input': input_}) values = dict(zip(self.labels, map(lambda x: x.item(), output[0]))) print("values: ", values) max_key = max(values, key=values.get) return max_key if __name__ == "__main__": classifier = Anime_Real_Cls(model_dir="./caformer_s36_v1.3_fixed") image_path = '1.webp' class_result = classifier(image_path) print("class_result: ", class_result) ```