--- license: other license_name: qwen2.5-vl license_link: https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/LICENSE base_model: Qwen/Qwen2.5-VL-7B-Instruct tags: - vision - image-text-to-text - weather - meteorology - climate - qwen2.5-vl language: - en pipeline_tag: image-text-to-text library_name: transformers --- # Weather Analysis Vision-Language Model (Qwen2.5-VL-7B) A specialized vision-language model for meteorological image analysis, fine-tuned from Qwen2.5-VL-7B-Instruct. ## Model Details - **Architecture**: Qwen2.5-VL (Vision-Language Model) - **Parameters**: 7.6B - **Base Model**: [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) - **Fine-tuning Method**: LoRA (Low-Rank Adaptation) - Rank (r): 32 - Alpha: 32 - Target modules: ['v_proj', 'down_proj', 'gate_proj', 'k_proj', 'up_proj', 'q_proj', 'o_proj'] - **Training Data**: Specialized weather and meteorological imagery dataset - **Checkpoint**: checkpoint-7000 ## Training Statistics ```json { "global_step": 7000, "epoch": 2.911837350180693, "total_flos": 4.786937654858951e+18, "train_loss": ".751" } ``` ## Image Preprocessing Note This model was trained with images preprocessed to 448x448 resolution. While Qwen2.5-VL supports dynamic resolution: - Best performance may be achieved with 448x448 images - The model will still work well with other resolutions - Native support for images from 56x56 to 3584x3584 ## Quick Start ```python from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor from PIL import Image import torch # Load model and processor model = Qwen2_5_VLForConditionalGeneration.from_pretrained( "qwen25-vl-weather-7b", torch_dtype=torch.float16, device_map="auto" ) processor = AutoProcessor.from_pretrained("qwen25-vl-weather-7b") # Prepare your weather image image = Image.open("weather_image.jpg") # Create a prompt prompt = "Analyze this weather image and describe the meteorological conditions." # Format the message messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": prompt} ] } ] # Process the input text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor( text=[text], images=[image], padding=True, return_tensors="pt" ).to(model.device) # Generate response generated_ids = model.generate(**inputs, max_new_tokens=512) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] print(output_text) ``` ## Intended Use This model is designed for: - **Weather Analysis**: Interpreting meteorological imagery and data - **Educational Applications**: Teaching weather concepts - **Research Support**: Assisting in weather data analysis - **Operational Meteorology**: Supporting weather forecasting workflows ## Capabilities The model excels at analyzing: - **Radar Imagery**: Reflectivity, velocity, dual-polarization products - **Satellite Data**: Visible, infrared, water vapor imagery - **Surface Charts**: Weather maps, station plots, frontal analysis - **Upper Air Data**: Soundings, constant pressure charts - **Model Output**: Forecast charts, ensemble data - **Observational Data**: Surface observations, meteograms ## Example Prompts Professional Analysis: - "Analyze the radar reflectivity patterns and identify any supercell characteristics." - "What does this water vapor imagery reveal about the jet stream position?" - "Describe the atmospheric stability based on this sounding." Educational: - "Explain this weather pattern in simple terms." - "What safety precautions should people take given these conditions?" ## Limitations - Specialized for meteorological imagery; may not perform well on general images - Best with standard meteorological data formats and visualizations - Responses reflect training data biases toward certain weather phenomena ## Hardware Requirements - **Minimum VRAM**: 16GB (with 8-bit quantization) - **Recommended VRAM**: 24GB+ (for full precision) - **Optimal Performance**: NVIDIA A100/H100 or RTX 4090/3090 ## Citation ```bibtex @misc{weather-qwen25vl-2025, title={Weather Analysis Vision-Language Model based on Qwen2.5-VL-7B}, author={Deepguess}, year={2025}, publisher={HuggingFace}, url={https://huggingface.co/qwen25-vl-weather-7b} } ``` ## Acknowledgments - Base model: Qwen team for Qwen2.5-VL - Training framework: Unsloth for efficient fine-tuning - Dataset: Custom curated weather imagery dataset ## License This model follows the license terms of Qwen2.5-VL. See the [license file](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/LICENSE) for details.