--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large tags: - generated_from_trainer datasets: - deepinfinityai/30_report_sentences_dataset metrics: - wer model-index: - name: Whisper_Large_30_sent_Model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: 11 Sentences type: deepinfinityai/30_report_sentences_dataset metrics: - name: Wer type: wer value: 169.6969696969697 --- # Whisper_Large_30_sent_Model This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the 11 Sentences dataset. It achieves the following results on the evaluation set: - Loss: 0.8472 - Wer: 169.6970 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.3891 | 8.3333 | 50 | 1.2466 | 21.2121 | | 0.0553 | 16.6667 | 100 | 0.1580 | 18.1818 | | 0.0002 | 25.0 | 150 | 0.1879 | 157.5758 | | 0.0002 | 33.3333 | 200 | 0.2462 | 87.8788 | | 0.0001 | 41.6667 | 250 | 0.3595 | 200.0 | | 0.0001 | 50.0 | 300 | 0.5265 | 190.9091 | | 0.0001 | 58.3333 | 350 | 0.6597 | 184.8485 | | 0.0001 | 66.6667 | 400 | 0.7327 | 175.7576 | | 0.0001 | 75.0 | 450 | 0.8169 | 172.7273 | | 0.0001 | 83.3333 | 500 | 0.8472 | 169.6970 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0