msr2000 commited on
Commit
4236a6a
·
1 Parent(s): 54b97b8

Release DeepSeek-R1-0528

Browse files
README.md ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: transformers
4
+ ---
5
+ # DeepSeek-R1-0528
6
+ <!-- markdownlint-disable first-line-h1 -->
7
+ <!-- markdownlint-disable html -->
8
+ <!-- markdownlint-disable no-duplicate-header -->
9
+
10
+ <div align="center">
11
+ <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V3" />
12
+ </div>
13
+ <hr>
14
+ <div align="center" style="line-height: 1;">
15
+ <a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;">
16
+ <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
17
+ </a>
18
+ <a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
19
+ <img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20R1-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
20
+ </a>
21
+ <a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;">
22
+ <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
23
+ </a>
24
+ </div>
25
+
26
+ <div align="center" style="line-height: 1;">
27
+ <a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
28
+ <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
29
+ </a>
30
+ <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
31
+ <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
32
+ </a>
33
+ <a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
34
+ <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
35
+ </a>
36
+ </div>
37
+
38
+ <div align="center" style="line-height: 1;">
39
+ <a href="LICENSE" style="margin: 2px;">
40
+ <img alt="License" src="https://img.shields.io/badge/License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
41
+ </a>
42
+ </div>
43
+
44
+
45
+ <p align="center">
46
+ <a href="https://arxiv.org/pdf/2501.12948"><b>Paper Link</b>👁️</a>
47
+ </p>
48
+
49
+
50
+ ## 1. Introduction
51
+
52
+ The DeepSeek R1 model has undergone a minor version upgrade, with the current version being DeepSeek-R1-0528. In the latest update, DeepSeek R1 has significantly improved its depth of reasoning and inference capabilities by leveraging increased computational resources and introducing algorithmic optimization mechanisms during post-training. The model has demonstrated outstanding performance across various benchmark evaluations, including mathematics, programming, and general logic. Its overall performance is now approaching that of leading models, such as O3 and Gemini 2.5 Pro.
53
+
54
+ <p align="center">
55
+ <img width="80%" src="figures/benchmark.png">
56
+ </p>
57
+
58
+ Compared to the previous version, the upgraded model shows significant improvements in handling complex reasoning tasks. For instance, in the AIME 2025 test, the model’s accuracy has increased from 70% in the previous version to 87.5% in the current version. This advancement stems from enhanced thinking depth during the reasoning process: in the AIME test set, the previous model used an average of 12K tokens per question, whereas the new version averages 23K tokens per question.
59
+
60
+ Beyond its improved reasoning capabilities, this version also offers a reduced hallucination rate, enhanced support for function calling, and better experience for vibe coding.
61
+
62
+ ## 2. Evaluation Results
63
+
64
+ ### DeepSeek-R1-0528
65
+ For all our models, the maximum generation length is set to 64K tokens. For benchmarks requiring sampling, we use a temperature of $0.6$, a top-p value of $0.95$, and generate 16 responses per query to estimate pass@1.
66
+ <div align="center">
67
+
68
+ | Category | Benchmark (Metric) | DeepSeek R1 | DeepSeek R1 0528
69
+ |----------|----------------------------------|-----------------|---|
70
+ | General |
71
+ | | MMLU-Redux (EM) | 92.9 | 93.4
72
+ | | MMLU-Pro (EM) | 84.0 | 85.0
73
+ | | GPQA-Diamond (Pass@1) | 71.5 | 81.0
74
+ | | SimpleQA (Correct) | 30.1 | 27.8
75
+ | | FRAMES (Acc.) | 82.5 | 83.0
76
+ | | Humanity's Last Exam (Pass@1) | 8.5 | 17.7
77
+ | Code |
78
+ | | LiveCodeBench (2408-2505) (Pass@1) | 63.5 | 73.3
79
+ | | Codeforces-Div1 (Rating) | 1530 | 1930
80
+ | | SWE Verified (Resolved) | 49.2 | 57.6
81
+ | | Aider-Polyglot (Acc.) | 53.3 | 71.6
82
+ | Math |
83
+ | | AIME 2024 (Pass@1) | 79.8 | 91.4
84
+ | | AIME 2025 (Pass@1) | 70.0 | 87.5
85
+ | | HMMT 2025 (Pass@1) | 41.7 | 79.4 |
86
+ | | CNMO 2024 (Pass@1) | 78.8 | 86.9
87
+ | Tools |
88
+ | | BFCL_v3_MultiTurn (Acc) | - | 37.0 |
89
+ | | Tau-Bench (Pass@1) | - | 53.5(Airline)/63.9(Retail)
90
+
91
+ </div>
92
+ Note: We use Agentless framework to evaluate model performance on SWE-Verified. We only evaluate text-only prompts in HLE testsets. GPT-4.1 is employed to act user role in Tau-bench evaluation.
93
+
94
+ ### DeepSeek-R1-0528-Qwen3-8B
95
+ Meanwhile, we distilled the chain-of-thought from DeepSeek-R1-0528 to post-train Qwen3 8B Base, obtaining DeepSeek-R1-0528-Qwen3-8B. This model achieves state-of-the-art (SOTA) performance among open-source models on the AIME 2024, surpassing Qwen3 8B by +10.0% and matching the performance of Qwen3-235B-thinking. We believe that the chain-of-thought from DeepSeek-R1-0528 will hold significant importance for both academic research on reasoning models and industrial development focused on small-scale models.
96
+
97
+ | | AIME 24 | AIME 25 | HMMT Feb 25 | GPQA Diamond | LiveCodeBench (2408-2505) |
98
+ |--------------------------------|---------|---------|-------------|--------------|---------------------------|
99
+ | Qwen3-235B-A22B | 85.7 | 81.5 | 62.5 | 71.1 | 66.5 |
100
+ | Qwen3-32B | 81.4 | 72.9 | - | 68.4 | - |
101
+ | Qwen3-8B | 76.0 | 67.3 | - | 62.0 | - |
102
+ | Phi-4-Reasoning-Plus-14B | 81.3 | 78.0 | 53.6 | 69.3 | - |
103
+ | Gemini-2.5-Flash-Thinking-0520 | 82.3 | 72.0 | 64.2 | 82.8 | 62.3 |
104
+ | o3-mini (medium) | 79.6 | 76.7 | 53.3 | 76.8 | 65.9 |
105
+ | DeepSeek-R1-0528-Qwen3-8B | 86.0 | 76.3 | 61.5 | 61.1 | 60.5 |
106
+
107
+ ## 3. Chat Website & API Platform
108
+ You can chat with DeepSeek-R1 on DeepSeek's official website: [chat.deepseek.com](https://chat.deepseek.com/sign_in), and switch on the button "DeepThink"
109
+
110
+ We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/)
111
+
112
+ ## 4. How to Run Locally
113
+
114
+ Please visit [DeepSeek-R1](https://github.com/deepseek-ai/DeepSeek-R1) repository for more information about running DeepSeek-R1-0528 locally.
115
+
116
+ Compared to previous versions of DeepSeek-R1, the usage recommendations for DeepSeek-R1-0528 have the following changes:
117
+
118
+ 1. System prompt is supported now.
119
+ 2. It is not required to add "\<think\>\n" at the beginning of the output to force the model into thinking pattern.
120
+
121
+ The model architecture of DeepSeek-R1-0528-Qwen3-8B is identical to that of Qwen3-8B, but it shares the same tokenizer configuration as DeepSeek-R1-0528. This model can be run in the same manner as Qwen3-8B.
122
+
123
+ ### System Prompt
124
+ In the official DeepSeek web/app, we use the same system prompt with a specific date.
125
+ ```
126
+ 该助手为DeepSeek-R1,由深度求索公司创造。
127
+ 今天是{current date}。
128
+ ```
129
+ For example,
130
+ ```
131
+ 该助手为DeepSeek-R1,由深度求索公司创造。
132
+ 今天是2025年5月28日,星期一。
133
+ ```
134
+ ### Temperature
135
+ In our web and application environments, the temperature parameter $T_{model}$ is set to 0.6.
136
+ ### Prompts for File Uploading and Web Search
137
+ For file uploading, please follow the template to create prompts, where {file_name}, {file_content} and {question} are arguments.
138
+ ```
139
+ file_template = \
140
+ """[file name]: {file_name}
141
+ [file content begin]
142
+ {file_content}
143
+ [file content end]
144
+ {question}"""
145
+ ```
146
+ For Web Search, {search_results}, {cur_date}, and {question} are arguments.
147
+ For Chinese query, we use the prompt:
148
+ ```
149
+ search_answer_zh_template = \
150
+ '''# 以下内容是基于用户发送的消息的搜索结果:
151
+ {search_results}
152
+ 在我给你的搜索结果中,每个结果都是[webpage X begin]...[webpage X end]格式的,X代表每篇文章的数字索引。请在适当的情况下在句子末尾引用上下文。请按照引用编号[citation:X]的格式在答案中对应部分引用上下文。如果一句话源自多个上下文,请列出所有相关的引用编号,例如[citation:3][citation:5],切记不要将引用集中在最后返回引用编号,而是在答案对应部分列出。
153
+ 在回答时,请注意以下几点:
154
+ - 今天是{cur_date}。
155
+ - 并非搜索结果的所有内容都与用户的问题密切相关,你需要结合问题,对搜索结果进行甄别、筛选。
156
+ - 对于列举类的问题(如列举所有航班信息),尽量将答案控制在10个要点以内,并告诉用户可以查看搜索来源、获得完整信息。优先提供信息完整、最相关的列举项;如非必要,不要主动告诉用户搜索结果未提供的内容。
157
+ - 对于创作类的问题(如写论文),请务必在正文的段落中引用对应的参考编号,例如[citation:3][citation:5],不能只在文章末尾引用。你需要解读并概括用户的题目要求,选择合适的格式,充分利用搜索结果并抽取重要信息,生成符合用户要求、极具思想深度、富有创造力与专业性的答案。你的创作篇幅需要尽可能延长,对于每一个要点的论述要推测用户的意图,给出尽可能多角度的回答要点,且务必信息量大、论述详尽。
158
+ - 如果回答很长,请尽量结构化、分段落总结。如果需要分点作答,尽量控制在5个点以内,并合并相关的内容。
159
+ - 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。
160
+ - 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。
161
+ - 你的回答应该综合多个相关网页来回答,不能重复引用一个网页。
162
+ - 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。
163
+ # 用户消息为:
164
+ {question}'''
165
+ ```
166
+ For English query, we use the prompt:
167
+ ```
168
+ search_answer_en_template = \
169
+ '''# The following contents are the search results related to the user's message:
170
+ {search_results}
171
+ In the search results I provide to you, each result is formatted as [webpage X begin]...[webpage X end], where X represents the numerical index of each article. Please cite the context at the end of the relevant sentence when appropriate. Use the citation format [citation:X] in the corresponding part of your answer. If a sentence is derived from multiple contexts, list all relevant citation numbers, such as [citation:3][citation:5]. Be sure not to cluster all citations at the end; instead, include them in the corresponding parts of the answer.
172
+ When responding, please keep the following points in mind:
173
+ - Today is {cur_date}.
174
+ - Not all content in the search results is closely related to the user's question. You need to evaluate and filter the search results based on the question.
175
+ - For listing-type questions (e.g., listing all flight information), try to limit the answer to 10 key points and inform the user that they can refer to the search sources for complete information. Prioritize providing the most complete and relevant items in the list. Avoid mentioning content not provided in the search results unless necessary.
176
+ - For creative tasks (e.g., writing an essay), ensure that references are cited within the body of the text, such as [citation:3][citation:5], rather than only at the end of the text. You need to interpret and summarize the user's requirements, choose an appropriate format, fully utilize the search results, extract key information, and generate an answer that is insightful, creative, and professional. Extend the length of your response as much as possible, addressing each point in detail and from multiple perspectives, ensuring the content is rich and thorough.
177
+ - If the response is lengthy, structure it well and summarize it in paragraphs. If a point-by-point format is needed, try to limit it to 5 points and merge related content.
178
+ - For objective Q&A, if the answer is very brief, you may add one or two related sentences to enrich the content.
179
+ - Choose an appropriate and visually appealing format for your response based on the user's requirements and the content of the answer, ensuring strong readability.
180
+ - Your answer should synthesize information from multiple relevant webpages and avoid repeatedly citing the same webpage.
181
+ - Unless the user requests otherwise, your response should be in the same language as the user's question.
182
+ # The user's message is:
183
+ {question}'''
184
+ ```
185
+
186
+ ## 5. License
187
+ This code repository is licensed under [MIT License](LICENSE). The use of DeepSeek-R1 models is also subject to [MIT License](LICENSE). DeepSeek-R1 series (including Base and Chat) supports commercial use and distillation.
188
+
189
+ ## 6. Citation
190
+ ```
191
+ @misc{deepseekai2025deepseekr1incentivizingreasoningcapability,
192
+ title={DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning},
193
+ author={DeepSeek-AI},
194
+ year={2025},
195
+ eprint={2501.12948},
196
+ archivePrefix={arXiv},
197
+ primaryClass={cs.CL},
198
+ url={https://arxiv.org/abs/2501.12948},
199
+ }
200
+ ```
201
+
202
+ ## 7. Contact
203
+ If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).
configuration_deepseek.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
+ class DeepseekV3Config(PretrainedConfig):
8
+ r"""
9
+ This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
10
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
+ defaults will yield a similar configuration to that of the DeepSeek-V3.
12
+
13
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
+ documentation from [`PretrainedConfig`] for more information.
15
+
16
+
17
+ Args:
18
+ vocab_size (`int`, *optional*, defaults to 129280):
19
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
+ `inputs_ids` passed when calling [`DeepseekV3Model`]
21
+ hidden_size (`int`, *optional*, defaults to 4096):
22
+ Dimension of the hidden representations.
23
+ intermediate_size (`int`, *optional*, defaults to 11008):
24
+ Dimension of the MLP representations.
25
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
+ Dimension of the MoE representations.
27
+ num_hidden_layers (`int`, *optional*, defaults to 32):
28
+ Number of hidden layers in the Transformer decoder.
29
+ num_nextn_predict_layers (`int`, *optional*, defaults to 1):
30
+ Number of nextn predict layers in the DeepSeekV3 Model.
31
+ num_attention_heads (`int`, *optional*, defaults to 32):
32
+ Number of attention heads for each attention layer in the Transformer decoder.
33
+ n_shared_experts (`int`, *optional*, defaults to None):
34
+ Number of shared experts, None means dense model.
35
+ n_routed_experts (`int`, *optional*, defaults to None):
36
+ Number of routed experts, None means dense model.
37
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
38
+ Scaling factor or routed experts.
39
+ topk_method (`str`, *optional*, defaults to `gready`):
40
+ Topk method used in routed gate.
41
+ n_group (`int`, *optional*, defaults to None):
42
+ Number of groups for routed experts.
43
+ topk_group (`int`, *optional*, defaults to None):
44
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
45
+ num_experts_per_tok (`int`, *optional*, defaults to None):
46
+ Number of selected experts, None means dense model.
47
+ moe_layer_freq (`int`, *optional*, defaults to 1):
48
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
49
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
50
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
51
+ \--k dense layers--/
52
+ norm_topk_prob (`bool`, *optional*, defaults to False):
53
+ Whether to normalize the weights of the routed experts.
54
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
55
+ Method of computing expert weights.
56
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
57
+ Auxiliary loss weight coefficient.
58
+ seq_aux = (`bool`, *optional*, defaults to True):
59
+ Whether to compute the auxiliary loss for each individual sample.
60
+ num_key_value_heads (`int`, *optional*):
61
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
62
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
63
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
64
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
65
+ by meanpooling all the original heads within that group. For more details checkout [this
66
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
67
+ `num_attention_heads`.
68
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
69
+ The non-linear activation function (function or string) in the decoder.
70
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
71
+ The maximum sequence length that this model might ever be used with.
72
+ initializer_range (`float`, *optional*, defaults to 0.02):
73
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
75
+ The epsilon used by the rms normalization layers.
76
+ use_cache (`bool`, *optional*, defaults to `True`):
77
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
78
+ relevant if `config.is_decoder=True`.
79
+ pad_token_id (`int`, *optional*):
80
+ Padding token id.
81
+ bos_token_id (`int`, *optional*, defaults to 1):
82
+ Beginning of stream token id.
83
+ eos_token_id (`int`, *optional*, defaults to 2):
84
+ End of stream token id.
85
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
86
+ Whether to tie weight embeddings
87
+ rope_theta (`float`, *optional*, defaults to 10000.0):
88
+ The base period of the RoPE embeddings.
89
+ rope_scaling (`Dict`, *optional*):
90
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
91
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
92
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
93
+ `max_position_embeddings` to the expected new maximum.
94
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
95
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
96
+ attention_dropout (`float`, *optional*, defaults to 0.0):
97
+ The dropout ratio for the attention probabilities.
98
+
99
+ ```python
100
+ >>> from transformers import DeepseekV3Model, DeepseekV3Config
101
+
102
+ >>> # Initializing a Deepseek-V3 style configuration
103
+ >>> configuration = DeepseekV3Config()
104
+
105
+ >>> # Accessing the model configuration
106
+ >>> configuration = model.config
107
+ ```"""
108
+
109
+ model_type = "deepseek_v3"
110
+ keys_to_ignore_at_inference = ["past_key_values"]
111
+
112
+ def __init__(
113
+ self,
114
+ vocab_size=129280,
115
+ hidden_size=7168,
116
+ intermediate_size=18432,
117
+ moe_intermediate_size = 2048,
118
+ num_hidden_layers=61,
119
+ num_nextn_predict_layers=1,
120
+ num_attention_heads=128,
121
+ num_key_value_heads=128,
122
+ n_shared_experts = 1,
123
+ n_routed_experts = 256,
124
+ ep_size = 1,
125
+ routed_scaling_factor = 2.5,
126
+ kv_lora_rank = 512,
127
+ q_lora_rank = 1536,
128
+ qk_rope_head_dim = 64,
129
+ v_head_dim = 128,
130
+ qk_nope_head_dim = 128,
131
+ topk_method = 'noaux_tc',
132
+ n_group = 8,
133
+ topk_group = 4,
134
+ num_experts_per_tok = 8,
135
+ moe_layer_freq = 1,
136
+ first_k_dense_replace = 3,
137
+ norm_topk_prob = True,
138
+ scoring_func = 'sigmoid',
139
+ hidden_act="silu",
140
+ max_position_embeddings=4096,
141
+ initializer_range=0.02,
142
+ rms_norm_eps=1e-6,
143
+ use_cache=True,
144
+ pad_token_id=None,
145
+ bos_token_id=0,
146
+ eos_token_id=1,
147
+ tie_word_embeddings=False,
148
+ rope_theta=10000.0,
149
+ rope_scaling=None,
150
+ attention_bias=False,
151
+ attention_dropout=0.0,
152
+ **kwargs,
153
+ ):
154
+ self.vocab_size = vocab_size
155
+ self.max_position_embeddings = max_position_embeddings
156
+ self.hidden_size = hidden_size
157
+ self.intermediate_size = intermediate_size
158
+ self.moe_intermediate_size = moe_intermediate_size
159
+ self.num_hidden_layers = num_hidden_layers
160
+ self.num_nextn_predict_layers = num_nextn_predict_layers
161
+ self.num_attention_heads = num_attention_heads
162
+ self.n_shared_experts = n_shared_experts
163
+ self.n_routed_experts = n_routed_experts
164
+ self.ep_size = ep_size
165
+ self.routed_scaling_factor = routed_scaling_factor
166
+ self.kv_lora_rank = kv_lora_rank
167
+ self.q_lora_rank = q_lora_rank
168
+ self.qk_rope_head_dim = qk_rope_head_dim
169
+ self.v_head_dim = v_head_dim
170
+ self.qk_nope_head_dim = qk_nope_head_dim
171
+ self.topk_method = topk_method
172
+ self.n_group = n_group
173
+ self.topk_group = topk_group
174
+ self.num_experts_per_tok = num_experts_per_tok
175
+ self.moe_layer_freq = moe_layer_freq
176
+ self.first_k_dense_replace = first_k_dense_replace
177
+ self.norm_topk_prob = norm_topk_prob
178
+ self.scoring_func = scoring_func
179
+ # for backward compatibility
180
+ if num_key_value_heads is None:
181
+ num_key_value_heads = num_attention_heads
182
+
183
+ self.num_key_value_heads = num_key_value_heads
184
+ self.hidden_act = hidden_act
185
+ self.initializer_range = initializer_range
186
+ self.rms_norm_eps = rms_norm_eps
187
+ self.use_cache = use_cache
188
+ self.rope_theta = rope_theta
189
+ self.rope_scaling = rope_scaling
190
+ self.attention_bias = attention_bias
191
+ self.attention_dropout = attention_dropout
192
+
193
+ super().__init__(
194
+ pad_token_id=pad_token_id,
195
+ bos_token_id=bos_token_id,
196
+ eos_token_id=eos_token_id,
197
+ tie_word_embeddings=tie_word_embeddings,
198
+ **kwargs,
199
+ )
figures/benchmark.png ADDED

Git LFS Details

  • SHA256: 60aba4b9eb561b56b877a9514ab205ba8a4ce516e4f678ec203e41c4527f40c9
  • Pointer size: 131 Bytes
  • Size of remote file: 323 kB
modeling_deepseek.py ADDED
@@ -0,0 +1,1848 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch DeepSeek model."""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+
31
+ from transformers.activations import ACT2FN
32
+ from transformers.cache_utils import Cache, DynamicCache
33
+ from transformers.modeling_attn_mask_utils import (
34
+ AttentionMaskConverter,
35
+ _prepare_4d_attention_mask,
36
+ _prepare_4d_causal_attention_mask,
37
+ )
38
+ from transformers.modeling_outputs import (
39
+ BaseModelOutputWithPast,
40
+ CausalLMOutputWithPast,
41
+ SequenceClassifierOutputWithPast,
42
+ )
43
+ from transformers.modeling_utils import PreTrainedModel
44
+ from transformers.pytorch_utils import (
45
+ ALL_LAYERNORM_LAYERS,
46
+ is_torch_greater_or_equal_than_1_13,
47
+ )
48
+ from transformers.utils import (
49
+ add_start_docstrings,
50
+ add_start_docstrings_to_model_forward,
51
+ is_flash_attn_2_available,
52
+ is_flash_attn_greater_or_equal_2_10,
53
+ logging,
54
+ replace_return_docstrings,
55
+ )
56
+ from transformers.utils.import_utils import is_torch_fx_available
57
+ from .configuration_deepseek import DeepseekV3Config
58
+ import torch.distributed as dist
59
+ import numpy as np
60
+
61
+ if is_flash_attn_2_available():
62
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
63
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
64
+
65
+
66
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
67
+ # It means that the function will not be traced through and simply appear as a node in the graph.
68
+ if is_torch_fx_available():
69
+ if not is_torch_greater_or_equal_than_1_13:
70
+ import torch.fx
71
+
72
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
73
+
74
+
75
+ logger = logging.get_logger(__name__)
76
+
77
+ _CONFIG_FOR_DOC = "DeepseekV3Config"
78
+
79
+
80
+ def _get_unpad_data(attention_mask):
81
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
82
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
83
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
84
+ cu_seqlens = F.pad(
85
+ torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
86
+ )
87
+ return (
88
+ indices,
89
+ cu_seqlens,
90
+ max_seqlen_in_batch,
91
+ )
92
+
93
+
94
+ class DeepseekV3RMSNorm(nn.Module):
95
+ def __init__(self, hidden_size, eps=1e-6):
96
+ """
97
+ DeepseekV3RMSNorm is equivalent to T5LayerNorm
98
+ """
99
+ super().__init__()
100
+ self.weight = nn.Parameter(torch.ones(hidden_size))
101
+ self.variance_epsilon = eps
102
+
103
+ def forward(self, hidden_states):
104
+ input_dtype = hidden_states.dtype
105
+ hidden_states = hidden_states.to(torch.float32)
106
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
107
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
108
+ return self.weight * hidden_states.to(input_dtype)
109
+
110
+
111
+ ALL_LAYERNORM_LAYERS.append(DeepseekV3RMSNorm)
112
+
113
+
114
+ class DeepseekV3RotaryEmbedding(nn.Module):
115
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
116
+ super().__init__()
117
+
118
+ self.dim = dim
119
+ self.max_position_embeddings = max_position_embeddings
120
+ self.base = base
121
+ inv_freq = 1.0 / (
122
+ self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
123
+ )
124
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
125
+
126
+ # Build here to make `torch.jit.trace` work.
127
+ self._set_cos_sin_cache(
128
+ seq_len=max_position_embeddings,
129
+ device=self.inv_freq.device,
130
+ dtype=torch.get_default_dtype(),
131
+ )
132
+ self.max_seq_len_cached = None
133
+
134
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
135
+ self.max_seq_len_cached = seq_len
136
+ t = torch.arange(
137
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
138
+ )
139
+
140
+ freqs = torch.outer(t, self.inv_freq.to(t.device))
141
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
142
+ emb = torch.cat((freqs, freqs), dim=-1)
143
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
144
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
145
+
146
+ def forward(self, x, seq_len=None):
147
+ # x: [bs, num_attention_heads, seq_len, head_size]
148
+ if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
149
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
150
+
151
+ return (
152
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
153
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
154
+ )
155
+
156
+
157
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV3
158
+ class DeepseekV3LinearScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
159
+ """DeepseekV3RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
160
+
161
+ def __init__(
162
+ self,
163
+ dim,
164
+ max_position_embeddings=2048,
165
+ base=10000,
166
+ device=None,
167
+ scaling_factor=1.0,
168
+ ):
169
+ self.scaling_factor = scaling_factor
170
+ super().__init__(dim, max_position_embeddings, base, device)
171
+
172
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
173
+ self.max_seq_len_cached = seq_len
174
+ t = torch.arange(
175
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
176
+ )
177
+ t = t / self.scaling_factor
178
+
179
+ freqs = torch.outer(t, self.inv_freq)
180
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
181
+ emb = torch.cat((freqs, freqs), dim=-1)
182
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
183
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
184
+
185
+
186
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV3
187
+ class DeepseekV3DynamicNTKScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
188
+ """DeepseekV3RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
189
+
190
+ def __init__(
191
+ self,
192
+ dim,
193
+ max_position_embeddings=2048,
194
+ base=10000,
195
+ device=None,
196
+ scaling_factor=1.0,
197
+ ):
198
+ self.scaling_factor = scaling_factor
199
+ super().__init__(dim, max_position_embeddings, base, device)
200
+
201
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
202
+ self.max_seq_len_cached = seq_len
203
+
204
+ if seq_len > self.max_position_embeddings:
205
+ base = self.base * (
206
+ (self.scaling_factor * seq_len / self.max_position_embeddings)
207
+ - (self.scaling_factor - 1)
208
+ ) ** (self.dim / (self.dim - 2))
209
+ inv_freq = 1.0 / (
210
+ base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
211
+ )
212
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
213
+
214
+ t = torch.arange(
215
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
216
+ )
217
+
218
+ freqs = torch.outer(t, self.inv_freq)
219
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
220
+ emb = torch.cat((freqs, freqs), dim=-1)
221
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
222
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
223
+
224
+
225
+ # Inverse dim formula to find dim based on number of rotations
226
+ def yarn_find_correction_dim(
227
+ num_rotations, dim, base=10000, max_position_embeddings=2048
228
+ ):
229
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
230
+ 2 * math.log(base)
231
+ )
232
+
233
+
234
+ # Find dim range bounds based on rotations
235
+ def yarn_find_correction_range(
236
+ low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
237
+ ):
238
+ low = math.floor(
239
+ yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
240
+ )
241
+ high = math.ceil(
242
+ yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
243
+ )
244
+ return max(low, 0), min(high, dim - 1) # Clamp values just in case
245
+
246
+
247
+ def yarn_get_mscale(scale=1, mscale=1):
248
+ if scale <= 1:
249
+ return 1.0
250
+ return 0.1 * mscale * math.log(scale) + 1.0
251
+
252
+
253
+ def yarn_linear_ramp_mask(min, max, dim):
254
+ if min == max:
255
+ max += 0.001 # Prevent singularity
256
+
257
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
258
+ ramp_func = torch.clamp(linear_func, 0, 1)
259
+ return ramp_func
260
+
261
+
262
+ class DeepseekV3YarnRotaryEmbedding(DeepseekV3RotaryEmbedding):
263
+
264
+ def __init__(
265
+ self,
266
+ dim,
267
+ max_position_embeddings=2048,
268
+ base=10000,
269
+ device=None,
270
+ scaling_factor=1.0,
271
+ original_max_position_embeddings=4096,
272
+ beta_fast=32,
273
+ beta_slow=1,
274
+ mscale=1,
275
+ mscale_all_dim=0,
276
+ ):
277
+ self.scaling_factor = scaling_factor
278
+ self.original_max_position_embeddings = original_max_position_embeddings
279
+ self.beta_fast = beta_fast
280
+ self.beta_slow = beta_slow
281
+ self.mscale = mscale
282
+ self.mscale_all_dim = mscale_all_dim
283
+ super().__init__(dim, max_position_embeddings, base, device)
284
+
285
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
286
+ self.max_seq_len_cached = seq_len
287
+ dim = self.dim
288
+
289
+ freq_extra = 1.0 / (
290
+ self.base
291
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
292
+ )
293
+ freq_inter = 1.0 / (
294
+ self.scaling_factor
295
+ * self.base
296
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
297
+ )
298
+
299
+ low, high = yarn_find_correction_range(
300
+ self.beta_fast,
301
+ self.beta_slow,
302
+ dim,
303
+ self.base,
304
+ self.original_max_position_embeddings,
305
+ )
306
+ inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
307
+ device=device, dtype=torch.float32
308
+ )
309
+ inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
310
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
311
+
312
+ t = torch.arange(seq_len, device=device, dtype=torch.float32)
313
+
314
+ freqs = torch.outer(t, inv_freq)
315
+
316
+ _mscale = float(
317
+ yarn_get_mscale(self.scaling_factor, self.mscale)
318
+ / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
319
+ )
320
+
321
+ emb = torch.cat((freqs, freqs), dim=-1)
322
+ self.register_buffer(
323
+ "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
324
+ )
325
+ self.register_buffer(
326
+ "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
327
+ )
328
+
329
+
330
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
331
+ def rotate_half(x):
332
+ """Rotates half the hidden dims of the input."""
333
+ x1 = x[..., : x.shape[-1] // 2]
334
+ x2 = x[..., x.shape[-1] // 2 :]
335
+ return torch.cat((-x2, x1), dim=-1)
336
+
337
+
338
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
339
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
340
+ """Applies Rotary Position Embedding to the query and key tensors.
341
+
342
+ Args:
343
+ q (`torch.Tensor`): The query tensor.
344
+ k (`torch.Tensor`): The key tensor.
345
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
346
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
347
+ position_ids (`torch.Tensor`):
348
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
349
+ used to pass offsetted position ids when working with a KV-cache.
350
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
351
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
352
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
353
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
354
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
355
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
356
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
357
+ Returns:
358
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
359
+ """
360
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
361
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
362
+
363
+ b, h, s, d = q.shape
364
+ q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
365
+
366
+ b, h, s, d = k.shape
367
+ k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
368
+
369
+ q_embed = (q * cos) + (rotate_half(q) * sin)
370
+ k_embed = (k * cos) + (rotate_half(k) * sin)
371
+ return q_embed, k_embed
372
+
373
+
374
+ class DeepseekV3MLP(nn.Module):
375
+ def __init__(self, config, hidden_size=None, intermediate_size=None):
376
+ super().__init__()
377
+ self.config = config
378
+ self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
379
+ self.intermediate_size = (
380
+ config.intermediate_size if intermediate_size is None else intermediate_size
381
+ )
382
+
383
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
384
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
385
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
386
+ self.act_fn = ACT2FN[config.hidden_act]
387
+
388
+ def forward(self, x):
389
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
390
+ return down_proj
391
+
392
+
393
+ class MoEGate(nn.Module):
394
+ def __init__(self, config):
395
+ super().__init__()
396
+ self.config = config
397
+ self.top_k = config.num_experts_per_tok
398
+ self.n_routed_experts = config.n_routed_experts
399
+ self.routed_scaling_factor = config.routed_scaling_factor
400
+ self.scoring_func = config.scoring_func
401
+ self.topk_method = config.topk_method
402
+ self.n_group = config.n_group
403
+ self.topk_group = config.topk_group
404
+
405
+ # topk selection algorithm
406
+ self.norm_topk_prob = config.norm_topk_prob
407
+ self.gating_dim = config.hidden_size
408
+ self.weight = nn.Parameter(
409
+ torch.empty((self.n_routed_experts, self.gating_dim))
410
+ )
411
+ if self.topk_method == "noaux_tc":
412
+ self.e_score_correction_bias = nn.Parameter(
413
+ torch.empty((self.n_routed_experts))
414
+ )
415
+ self.reset_parameters()
416
+
417
+ def reset_parameters(self) -> None:
418
+ import torch.nn.init as init
419
+
420
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
421
+
422
+ def forward(self, hidden_states):
423
+ bsz, seq_len, h = hidden_states.shape
424
+ ### compute gating score
425
+ hidden_states = hidden_states.view(-1, h)
426
+ logits = F.linear(
427
+ hidden_states.type(torch.float32), self.weight.type(torch.float32), None
428
+ )
429
+ if self.scoring_func == "sigmoid":
430
+ scores = logits.sigmoid()
431
+ else:
432
+ raise NotImplementedError(
433
+ f"insupportable scoring function for MoE gating: {self.scoring_func}"
434
+ )
435
+
436
+ ### select top-k experts
437
+ if self.topk_method == "noaux_tc":
438
+ assert not self.training
439
+ scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0)
440
+ group_scores = (
441
+ scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim = -1)
442
+ ) # [n, n_group]
443
+ group_idx = torch.topk(
444
+ group_scores, k=self.topk_group, dim=-1, sorted=False
445
+ )[
446
+ 1
447
+ ] # [n, top_k_group]
448
+ group_mask = torch.zeros_like(group_scores) # [n, n_group]
449
+ group_mask.scatter_(1, group_idx, 1) # [n, n_group]
450
+ score_mask = (
451
+ group_mask.unsqueeze(-1)
452
+ .expand(
453
+ bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
454
+ )
455
+ .reshape(bsz * seq_len, -1)
456
+ ) # [n, e]
457
+ tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), float("-inf")) # [n, e]
458
+ _, topk_idx = torch.topk(
459
+ tmp_scores, k=self.top_k, dim=-1, sorted=False
460
+ )
461
+ topk_weight = scores.gather(1, topk_idx)
462
+ else:
463
+ raise NotImplementedError(
464
+ f"insupportable TopK function for MoE gating: {self.topk_method}"
465
+ )
466
+
467
+ ### norm gate to sum 1
468
+ if self.top_k > 1 and self.norm_topk_prob:
469
+ denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
470
+ topk_weight = topk_weight / denominator
471
+ topk_weight = topk_weight * self.routed_scaling_factor # must multiply the scaling factor
472
+
473
+ return topk_idx, topk_weight
474
+
475
+ class DeepseekV3MoE(nn.Module):
476
+ """
477
+ A mixed expert module containing shared experts.
478
+ """
479
+
480
+ def __init__(self, config):
481
+ super().__init__()
482
+ self.config = config
483
+ self.num_experts_per_tok = config.num_experts_per_tok
484
+
485
+ if hasattr(config, "ep_size") and config.ep_size > 1:
486
+ assert config.ep_size == dist.get_world_size()
487
+ self.ep_size = config.ep_size
488
+ self.experts_per_rank = config.n_routed_experts // config.ep_size
489
+ self.ep_rank = dist.get_rank()
490
+ self.experts = nn.ModuleList(
491
+ [
492
+ (
493
+ DeepseekV3MLP(
494
+ config, intermediate_size=config.moe_intermediate_size
495
+ )
496
+ if i >= self.ep_rank * self.experts_per_rank
497
+ and i < (self.ep_rank + 1) * self.experts_per_rank
498
+ else None
499
+ )
500
+ for i in range(config.n_routed_experts)
501
+ ]
502
+ )
503
+ else:
504
+ self.ep_size = 1
505
+ self.experts_per_rank = config.n_routed_experts
506
+ self.ep_rank = 0
507
+ self.experts = nn.ModuleList(
508
+ [
509
+ DeepseekV3MLP(
510
+ config, intermediate_size=config.moe_intermediate_size
511
+ )
512
+ for i in range(config.n_routed_experts)
513
+ ]
514
+ )
515
+ self.gate = MoEGate(config)
516
+ if config.n_shared_experts is not None:
517
+ intermediate_size = config.moe_intermediate_size * config.n_shared_experts
518
+ self.shared_experts = DeepseekV3MLP(
519
+ config=config, intermediate_size=intermediate_size
520
+ )
521
+
522
+ def forward(self, hidden_states):
523
+ identity = hidden_states
524
+ orig_shape = hidden_states.shape
525
+ topk_idx, topk_weight = self.gate(hidden_states)
526
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
527
+ flat_topk_idx = topk_idx.view(-1)
528
+ if not self.training:
529
+ y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
530
+ if self.config.n_shared_experts is not None:
531
+ y = y + self.shared_experts(identity)
532
+ return y
533
+
534
+ @torch.no_grad()
535
+ def moe_infer(self, x, topk_ids, topk_weight):
536
+ cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
537
+ cnts.scatter_(1, topk_ids, 1)
538
+ tokens_per_expert = cnts.sum(dim=0)
539
+ idxs = topk_ids.view(-1).argsort()
540
+ sorted_tokens = x[idxs // topk_ids.shape[1]]
541
+ sorted_tokens_shape = sorted_tokens.shape
542
+ if self.ep_size > 1:
543
+ tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
544
+ tokens_per_expert_group = tokens_per_expert.new_empty(
545
+ tokens_per_expert.shape[0]
546
+ )
547
+ dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
548
+ output_splits = (
549
+ tokens_per_expert_group.view(self.ep_size, -1)
550
+ .sum(1)
551
+ .cpu()
552
+ .numpy()
553
+ .tolist()
554
+ )
555
+ gathered_tokens = sorted_tokens.new_empty(
556
+ tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
557
+ )
558
+ input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
559
+ dist.all_to_all(
560
+ list(gathered_tokens.split(output_splits)),
561
+ list(sorted_tokens.split(input_split_sizes)),
562
+ )
563
+ tokens_per_expert_post_gather = tokens_per_expert_group.view(
564
+ self.ep_size, self.experts_per_rank
565
+ ).sum(dim=0)
566
+ gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
567
+ s = 0
568
+ for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
569
+ gatherd_idxs[s : s + k] = i % self.experts_per_rank
570
+ s += k
571
+ gatherd_idxs = gatherd_idxs.argsort()
572
+ sorted_tokens = gathered_tokens[gatherd_idxs]
573
+ tokens_per_expert = tokens_per_expert_post_gather
574
+ tokens_per_expert = tokens_per_expert.cpu().numpy()
575
+
576
+ outputs = []
577
+ start_idx = 0
578
+ for i, num_tokens in enumerate(tokens_per_expert):
579
+ end_idx = start_idx + num_tokens
580
+ if num_tokens == 0:
581
+ continue
582
+ expert = self.experts[i + self.ep_rank * self.experts_per_rank]
583
+ tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
584
+ expert_out = expert(tokens_for_this_expert)
585
+ outputs.append(expert_out)
586
+ start_idx = end_idx
587
+
588
+ outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
589
+ if self.ep_size > 1:
590
+ new_x = torch.empty_like(outs)
591
+ new_x[gatherd_idxs] = outs
592
+ gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
593
+ dist.all_to_all(
594
+ list(gathered_tokens.split(input_split_sizes)),
595
+ list(new_x.split(output_splits)),
596
+ )
597
+ outs = gathered_tokens
598
+
599
+ new_x = torch.empty_like(outs)
600
+ new_x[idxs] = outs
601
+ final_out = (
602
+ new_x.view(*topk_ids.shape, -1)
603
+ .type(topk_weight.dtype)
604
+ .mul_(topk_weight.unsqueeze(dim=-1))
605
+ .sum(dim=1)
606
+ .type(new_x.dtype)
607
+ )
608
+ return final_out
609
+
610
+
611
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
612
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
613
+ """
614
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
615
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
616
+ """
617
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
618
+ if n_rep == 1:
619
+ return hidden_states
620
+ hidden_states = hidden_states[:, :, None, :, :].expand(
621
+ batch, num_key_value_heads, n_rep, slen, head_dim
622
+ )
623
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
624
+
625
+
626
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV3
627
+ class DeepseekV3Attention(nn.Module):
628
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
629
+
630
+ def __init__(self, config: DeepseekV3Config, layer_idx: Optional[int] = None):
631
+ super().__init__()
632
+ self.config = config
633
+ self.layer_idx = layer_idx
634
+ if layer_idx is None:
635
+ logger.warning_once(
636
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
637
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
638
+ "when creating this class."
639
+ )
640
+
641
+ self.attention_dropout = config.attention_dropout
642
+ self.hidden_size = config.hidden_size
643
+ self.num_heads = config.num_attention_heads
644
+
645
+ self.max_position_embeddings = config.max_position_embeddings
646
+ self.rope_theta = config.rope_theta
647
+ self.q_lora_rank = config.q_lora_rank
648
+ self.qk_rope_head_dim = config.qk_rope_head_dim
649
+ self.kv_lora_rank = config.kv_lora_rank
650
+ self.v_head_dim = config.v_head_dim
651
+ self.qk_nope_head_dim = config.qk_nope_head_dim
652
+ self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
653
+
654
+ self.is_causal = True
655
+
656
+ if self.q_lora_rank is None:
657
+ self.q_proj = nn.Linear(
658
+ self.hidden_size, self.num_heads * self.q_head_dim, bias=False
659
+ )
660
+ else:
661
+ self.q_a_proj = nn.Linear(
662
+ self.hidden_size, config.q_lora_rank, bias=config.attention_bias
663
+ )
664
+ self.q_a_layernorm = DeepseekV3RMSNorm(config.q_lora_rank)
665
+ self.q_b_proj = nn.Linear(
666
+ config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
667
+ )
668
+
669
+ self.kv_a_proj_with_mqa = nn.Linear(
670
+ self.hidden_size,
671
+ config.kv_lora_rank + config.qk_rope_head_dim,
672
+ bias=config.attention_bias,
673
+ )
674
+ self.kv_a_layernorm = DeepseekV3RMSNorm(config.kv_lora_rank)
675
+ self.kv_b_proj = nn.Linear(
676
+ config.kv_lora_rank,
677
+ self.num_heads
678
+ * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
679
+ bias=False,
680
+ )
681
+
682
+ self.o_proj = nn.Linear(
683
+ self.num_heads * self.v_head_dim,
684
+ self.hidden_size,
685
+ bias=config.attention_bias,
686
+ )
687
+ self._init_rope()
688
+
689
+ self.softmax_scale = self.q_head_dim ** (-0.5)
690
+ if self.config.rope_scaling is not None:
691
+ mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
692
+ scaling_factor = self.config.rope_scaling["factor"]
693
+ if mscale_all_dim:
694
+ mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
695
+ self.softmax_scale = self.softmax_scale * mscale * mscale
696
+
697
+ def _init_rope(self):
698
+ if self.config.rope_scaling is None:
699
+ self.rotary_emb = DeepseekV3RotaryEmbedding(
700
+ self.qk_rope_head_dim,
701
+ max_position_embeddings=self.max_position_embeddings,
702
+ base=self.rope_theta,
703
+ )
704
+ else:
705
+ scaling_type = self.config.rope_scaling["type"]
706
+ scaling_factor = self.config.rope_scaling["factor"]
707
+ if scaling_type == "linear":
708
+ self.rotary_emb = DeepseekV3LinearScalingRotaryEmbedding(
709
+ self.qk_rope_head_dim,
710
+ max_position_embeddings=self.max_position_embeddings,
711
+ scaling_factor=scaling_factor,
712
+ base=self.rope_theta,
713
+ )
714
+ elif scaling_type == "dynamic":
715
+ self.rotary_emb = DeepseekV3DynamicNTKScalingRotaryEmbedding(
716
+ self.qk_rope_head_dim,
717
+ max_position_embeddings=self.max_position_embeddings,
718
+ scaling_factor=scaling_factor,
719
+ base=self.rope_theta,
720
+ )
721
+ elif scaling_type == "yarn":
722
+ kwargs = {
723
+ key: self.config.rope_scaling[key]
724
+ for key in [
725
+ "original_max_position_embeddings",
726
+ "beta_fast",
727
+ "beta_slow",
728
+ "mscale",
729
+ "mscale_all_dim",
730
+ ]
731
+ if key in self.config.rope_scaling
732
+ }
733
+ self.rotary_emb = DeepseekV3YarnRotaryEmbedding(
734
+ self.qk_rope_head_dim,
735
+ max_position_embeddings=self.max_position_embeddings,
736
+ scaling_factor=scaling_factor,
737
+ base=self.rope_theta,
738
+ **kwargs,
739
+ )
740
+ else:
741
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
742
+
743
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
744
+ return (
745
+ tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
746
+ .transpose(1, 2)
747
+ .contiguous()
748
+ )
749
+
750
+ def forward(
751
+ self,
752
+ hidden_states: torch.Tensor,
753
+ attention_mask: Optional[torch.Tensor] = None,
754
+ position_ids: Optional[torch.LongTensor] = None,
755
+ past_key_value: Optional[Cache] = None,
756
+ output_attentions: bool = False,
757
+ use_cache: bool = False,
758
+ **kwargs,
759
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
760
+ if "padding_mask" in kwargs:
761
+ warnings.warn(
762
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
763
+ )
764
+ bsz, q_len, _ = hidden_states.size()
765
+
766
+ if self.q_lora_rank is None:
767
+ q = self.q_proj(hidden_states)
768
+ else:
769
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
770
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
771
+ q_nope, q_pe = torch.split(
772
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
773
+ )
774
+
775
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
776
+ compressed_kv, k_pe = torch.split(
777
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
778
+ )
779
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
780
+ kv = (
781
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
782
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
783
+ .transpose(1, 2)
784
+ )
785
+
786
+ k_nope, value_states = torch.split(
787
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
788
+ )
789
+ kv_seq_len = value_states.shape[-2]
790
+ if past_key_value is not None:
791
+ if self.layer_idx is None:
792
+ raise ValueError(
793
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
794
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
795
+ "with a layer index."
796
+ )
797
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
798
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
799
+
800
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
801
+
802
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
803
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
804
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
805
+
806
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
807
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
808
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
809
+ if past_key_value is not None:
810
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
811
+ key_states, value_states = past_key_value.update(
812
+ key_states, value_states, self.layer_idx, cache_kwargs
813
+ )
814
+
815
+ attn_weights = (
816
+ torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
817
+ )
818
+
819
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
820
+ raise ValueError(
821
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
822
+ f" {attn_weights.size()}"
823
+ )
824
+ assert attention_mask is not None
825
+ if attention_mask is not None:
826
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
827
+ raise ValueError(
828
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
829
+ )
830
+ attn_weights = attn_weights + attention_mask
831
+
832
+ # upcast attention to fp32
833
+ attn_weights = nn.functional.softmax(
834
+ attn_weights, dim=-1, dtype=torch.float32
835
+ ).to(query_states.dtype)
836
+ attn_weights = nn.functional.dropout(
837
+ attn_weights, p=self.attention_dropout, training=self.training
838
+ )
839
+ attn_output = torch.matmul(attn_weights, value_states)
840
+
841
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
842
+ raise ValueError(
843
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
844
+ f" {attn_output.size()}"
845
+ )
846
+
847
+ attn_output = attn_output.transpose(1, 2).contiguous()
848
+
849
+ attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
850
+
851
+ attn_output = self.o_proj(attn_output)
852
+
853
+ if not output_attentions:
854
+ attn_weights = None
855
+
856
+ return attn_output, attn_weights, past_key_value
857
+
858
+
859
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV3
860
+ class DeepseekV3FlashAttention2(DeepseekV3Attention):
861
+ """
862
+ DeepseekV3 flash attention module. This module inherits from `DeepseekV3Attention` as the weights of the module stays
863
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
864
+ flash attention and deal with padding tokens in case the input contains any of them.
865
+ """
866
+
867
+ def __init__(self, *args, **kwargs):
868
+ super().__init__(*args, **kwargs)
869
+
870
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
871
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
872
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
873
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
874
+
875
+ def forward(
876
+ self,
877
+ hidden_states: torch.Tensor,
878
+ attention_mask: Optional[torch.LongTensor] = None,
879
+ position_ids: Optional[torch.LongTensor] = None,
880
+ past_key_value: Optional[Cache] = None,
881
+ output_attentions: bool = False,
882
+ use_cache: bool = False,
883
+ **kwargs,
884
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
885
+ # DeepseekV3FlashAttention2 attention does not support output_attentions
886
+ if "padding_mask" in kwargs:
887
+ warnings.warn(
888
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
889
+ )
890
+
891
+ # overwrite attention_mask with padding_mask
892
+ attention_mask = kwargs.pop("padding_mask")
893
+
894
+ output_attentions = False
895
+
896
+ bsz, q_len, _ = hidden_states.size()
897
+
898
+ if self.q_lora_rank is None:
899
+ q = self.q_proj(hidden_states)
900
+ else:
901
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
902
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
903
+ q_nope, q_pe = torch.split(
904
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
905
+ )
906
+
907
+ # Flash attention requires the input to have the shape
908
+ # batch_size x seq_length x head_dim x hidden_dim
909
+ # therefore we just need to keep the original shape
910
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
911
+ compressed_kv, k_pe = torch.split(
912
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
913
+ )
914
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
915
+ kv = (
916
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
917
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
918
+ .transpose(1, 2)
919
+ )
920
+
921
+ k_nope, value_states = torch.split(
922
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
923
+ )
924
+ kv_seq_len = value_states.shape[-2]
925
+
926
+ kv_seq_len = value_states.shape[-2]
927
+ if past_key_value is not None:
928
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
929
+
930
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
931
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
932
+
933
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
934
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
935
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
936
+
937
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
938
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
939
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
940
+
941
+ if self.q_head_dim != self.v_head_dim:
942
+ value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
943
+
944
+ if past_key_value is not None:
945
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
946
+ key_states, value_states = past_key_value.update(
947
+ key_states, value_states, self.layer_idx, cache_kwargs
948
+ )
949
+
950
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
951
+ # to be able to avoid many of these transpose/reshape/view.
952
+ query_states = query_states.transpose(1, 2)
953
+ key_states = key_states.transpose(1, 2)
954
+ value_states = value_states.transpose(1, 2)
955
+
956
+ dropout_rate = self.attention_dropout if self.training else 0.0
957
+
958
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
959
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
960
+ # cast them back in the correct dtype just to be sure everything works as expected.
961
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
962
+ # in fp32. (DeepseekV3RMSNorm handles it correctly)
963
+
964
+ input_dtype = query_states.dtype
965
+ if input_dtype == torch.float32:
966
+ # Handle the case where the model is quantized
967
+ if hasattr(self.config, "_pre_quantization_dtype"):
968
+ target_dtype = self.config._pre_quantization_dtype
969
+ elif torch.is_autocast_enabled():
970
+ target_dtype = torch.get_autocast_gpu_dtype()
971
+ else:
972
+ target_dtype = (
973
+ self.q_proj.weight.dtype
974
+ if self.q_lora_rank is None
975
+ else self.q_a_proj.weight.dtype
976
+ )
977
+
978
+ logger.warning_once(
979
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
980
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
981
+ f" {target_dtype}."
982
+ )
983
+
984
+ query_states = query_states.to(target_dtype)
985
+ key_states = key_states.to(target_dtype)
986
+ value_states = value_states.to(target_dtype)
987
+
988
+ attn_output = self._flash_attention_forward(
989
+ query_states,
990
+ key_states,
991
+ value_states,
992
+ attention_mask,
993
+ q_len,
994
+ dropout=dropout_rate,
995
+ softmax_scale=self.softmax_scale,
996
+ )
997
+ if self.q_head_dim != self.v_head_dim:
998
+ attn_output = attn_output[:, :, :, : self.v_head_dim]
999
+
1000
+ attn_output = attn_output.reshape(
1001
+ bsz, q_len, self.num_heads * self.v_head_dim
1002
+ ).contiguous()
1003
+ attn_output = self.o_proj(attn_output)
1004
+
1005
+ if not output_attentions:
1006
+ attn_weights = None
1007
+
1008
+ return attn_output, attn_weights, past_key_value
1009
+
1010
+ def _flash_attention_forward(
1011
+ self,
1012
+ query_states,
1013
+ key_states,
1014
+ value_states,
1015
+ attention_mask,
1016
+ query_length,
1017
+ dropout=0.0,
1018
+ softmax_scale=None,
1019
+ ):
1020
+ """
1021
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
1022
+ first unpad the input, then computes the attention scores and pad the final attention scores.
1023
+
1024
+ Args:
1025
+ query_states (`torch.Tensor`):
1026
+ Input query states to be passed to Flash Attention API
1027
+ key_states (`torch.Tensor`):
1028
+ Input key states to be passed to Flash Attention API
1029
+ value_states (`torch.Tensor`):
1030
+ Input value states to be passed to Flash Attention API
1031
+ attention_mask (`torch.Tensor`):
1032
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
1033
+ position of padding tokens and 1 for the position of non-padding tokens.
1034
+ dropout (`int`, *optional*):
1035
+ Attention dropout
1036
+ softmax_scale (`float`, *optional*):
1037
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
1038
+ """
1039
+ if not self._flash_attn_uses_top_left_mask:
1040
+ causal = self.is_causal
1041
+ else:
1042
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV3FlashAttention2 __init__.
1043
+ causal = self.is_causal and query_length != 1
1044
+
1045
+ # Contains at least one padding token in the sequence
1046
+ if attention_mask is not None:
1047
+ batch_size = query_states.shape[0]
1048
+ (
1049
+ query_states,
1050
+ key_states,
1051
+ value_states,
1052
+ indices_q,
1053
+ cu_seq_lens,
1054
+ max_seq_lens,
1055
+ ) = self._upad_input(
1056
+ query_states, key_states, value_states, attention_mask, query_length
1057
+ )
1058
+
1059
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
1060
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
1061
+
1062
+ attn_output_unpad = flash_attn_varlen_func(
1063
+ query_states,
1064
+ key_states,
1065
+ value_states,
1066
+ cu_seqlens_q=cu_seqlens_q,
1067
+ cu_seqlens_k=cu_seqlens_k,
1068
+ max_seqlen_q=max_seqlen_in_batch_q,
1069
+ max_seqlen_k=max_seqlen_in_batch_k,
1070
+ dropout_p=dropout,
1071
+ softmax_scale=softmax_scale,
1072
+ causal=causal,
1073
+ )
1074
+
1075
+ attn_output = pad_input(
1076
+ attn_output_unpad, indices_q, batch_size, query_length
1077
+ )
1078
+ else:
1079
+ attn_output = flash_attn_func(
1080
+ query_states,
1081
+ key_states,
1082
+ value_states,
1083
+ dropout,
1084
+ softmax_scale=softmax_scale,
1085
+ causal=causal,
1086
+ )
1087
+
1088
+ return attn_output
1089
+
1090
+ def _upad_input(
1091
+ self, query_layer, key_layer, value_layer, attention_mask, query_length
1092
+ ):
1093
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
1094
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
1095
+
1096
+ key_layer = index_first_axis(
1097
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1098
+ indices_k,
1099
+ )
1100
+ value_layer = index_first_axis(
1101
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1102
+ indices_k,
1103
+ )
1104
+ if query_length == kv_seq_len:
1105
+ query_layer = index_first_axis(
1106
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
1107
+ indices_k,
1108
+ )
1109
+ cu_seqlens_q = cu_seqlens_k
1110
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
1111
+ indices_q = indices_k
1112
+ elif query_length == 1:
1113
+ max_seqlen_in_batch_q = 1
1114
+ cu_seqlens_q = torch.arange(
1115
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
1116
+ ) # There is a memcpy here, that is very bad.
1117
+ indices_q = cu_seqlens_q[:-1]
1118
+ query_layer = query_layer.squeeze(1)
1119
+ else:
1120
+ # The -q_len: slice assumes left padding.
1121
+ attention_mask = attention_mask[:, -query_length:]
1122
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
1123
+ query_layer, attention_mask
1124
+ )
1125
+
1126
+ return (
1127
+ query_layer,
1128
+ key_layer,
1129
+ value_layer,
1130
+ indices_q,
1131
+ (cu_seqlens_q, cu_seqlens_k),
1132
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1133
+ )
1134
+
1135
+
1136
+ ATTENTION_CLASSES = {
1137
+ "eager": DeepseekV3Attention,
1138
+ "flash_attention_2": DeepseekV3FlashAttention2,
1139
+ }
1140
+
1141
+
1142
+ class DeepseekV3DecoderLayer(nn.Module):
1143
+ def __init__(self, config: DeepseekV3Config, layer_idx: int):
1144
+ super().__init__()
1145
+ self.hidden_size = config.hidden_size
1146
+
1147
+ self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
1148
+ config=config, layer_idx=layer_idx
1149
+ )
1150
+
1151
+ self.mlp = (
1152
+ DeepseekV3MoE(config)
1153
+ if (
1154
+ config.n_routed_experts is not None
1155
+ and layer_idx >= config.first_k_dense_replace
1156
+ and layer_idx % config.moe_layer_freq == 0
1157
+ )
1158
+ else DeepseekV3MLP(config)
1159
+ )
1160
+ self.input_layernorm = DeepseekV3RMSNorm(
1161
+ config.hidden_size, eps=config.rms_norm_eps
1162
+ )
1163
+ self.post_attention_layernorm = DeepseekV3RMSNorm(
1164
+ config.hidden_size, eps=config.rms_norm_eps
1165
+ )
1166
+
1167
+ def forward(
1168
+ self,
1169
+ hidden_states: torch.Tensor,
1170
+ attention_mask: Optional[torch.Tensor] = None,
1171
+ position_ids: Optional[torch.LongTensor] = None,
1172
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
1173
+ output_attentions: Optional[bool] = False,
1174
+ use_cache: Optional[bool] = False,
1175
+ **kwargs,
1176
+ ) -> Tuple[
1177
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
1178
+ ]:
1179
+ """
1180
+ Args:
1181
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1182
+ attention_mask (`torch.FloatTensor`, *optional*):
1183
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
1184
+ query_sequence_length, key_sequence_length)` if default attention is used.
1185
+ output_attentions (`bool`, *optional*):
1186
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1187
+ returned tensors for more detail.
1188
+ use_cache (`bool`, *optional*):
1189
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1190
+ (see `past_key_values`).
1191
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1192
+ """
1193
+ if "padding_mask" in kwargs:
1194
+ warnings.warn(
1195
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1196
+ )
1197
+ residual = hidden_states
1198
+
1199
+ hidden_states = self.input_layernorm(hidden_states)
1200
+
1201
+ # Self Attention
1202
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
1203
+ hidden_states=hidden_states,
1204
+ attention_mask=attention_mask,
1205
+ position_ids=position_ids,
1206
+ past_key_value=past_key_value,
1207
+ output_attentions=output_attentions,
1208
+ use_cache=use_cache,
1209
+ **kwargs,
1210
+ )
1211
+ hidden_states = residual + hidden_states
1212
+
1213
+ # Fully Connected
1214
+ residual = hidden_states
1215
+ hidden_states = self.post_attention_layernorm(hidden_states)
1216
+ hidden_states = self.mlp(hidden_states)
1217
+ hidden_states = residual + hidden_states
1218
+
1219
+ outputs = (hidden_states,)
1220
+
1221
+ if output_attentions:
1222
+ outputs += (self_attn_weights,)
1223
+
1224
+ if use_cache:
1225
+ outputs += (present_key_value,)
1226
+
1227
+ return outputs
1228
+
1229
+
1230
+ DeepseekV3_START_DOCSTRING = r"""
1231
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1232
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1233
+ etc.)
1234
+
1235
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1236
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1237
+ and behavior.
1238
+
1239
+ Parameters:
1240
+ config ([`DeepseekV3Config`]):
1241
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1242
+ load the weights associated with the model, only the configuration. Check out the
1243
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1244
+ """
1245
+
1246
+
1247
+ @add_start_docstrings(
1248
+ "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
1249
+ DeepseekV3_START_DOCSTRING,
1250
+ )
1251
+ class DeepseekV3PreTrainedModel(PreTrainedModel):
1252
+ config_class = DeepseekV3Config
1253
+ base_model_prefix = "model"
1254
+ supports_gradient_checkpointing = True
1255
+ _no_split_modules = ["DeepseekV3DecoderLayer"]
1256
+ _skip_keys_device_placement = "past_key_values"
1257
+ _supports_flash_attn_2 = True
1258
+ _supports_cache_class = True
1259
+
1260
+ def _init_weights(self, module):
1261
+ std = self.config.initializer_range
1262
+ if isinstance(module, nn.Linear):
1263
+ module.weight.data.normal_(mean=0.0, std=std)
1264
+ if module.bias is not None:
1265
+ module.bias.data.zero_()
1266
+ elif isinstance(module, nn.Embedding):
1267
+ module.weight.data.normal_(mean=0.0, std=std)
1268
+ if module.padding_idx is not None:
1269
+ module.weight.data[module.padding_idx].zero_()
1270
+
1271
+
1272
+ DeepseekV3_INPUTS_DOCSTRING = r"""
1273
+ Args:
1274
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1275
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1276
+ it.
1277
+
1278
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1279
+ [`PreTrainedTokenizer.__call__`] for details.
1280
+
1281
+ [What are input IDs?](../glossary#input-ids)
1282
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1283
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1284
+
1285
+ - 1 for tokens that are **not masked**,
1286
+ - 0 for tokens that are **masked**.
1287
+
1288
+ [What are attention masks?](../glossary#attention-mask)
1289
+
1290
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1291
+ [`PreTrainedTokenizer.__call__`] for details.
1292
+
1293
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1294
+ `past_key_values`).
1295
+
1296
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1297
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1298
+ information on the default strategy.
1299
+
1300
+ - 1 indicates the head is **not masked**,
1301
+ - 0 indicates the head is **masked**.
1302
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1303
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1304
+ config.n_positions - 1]`.
1305
+
1306
+ [What are position IDs?](../glossary#position-ids)
1307
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1308
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1309
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1310
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1311
+
1312
+ Two formats are allowed:
1313
+ - a [`~cache_utils.Cache`] instance;
1314
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1315
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1316
+ cache format.
1317
+
1318
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1319
+ legacy cache format will be returned.
1320
+
1321
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1322
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1323
+ of shape `(batch_size, sequence_length)`.
1324
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1325
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1326
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1327
+ model's internal embedding lookup matrix.
1328
+ use_cache (`bool`, *optional*):
1329
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1330
+ `past_key_values`).
1331
+ output_attentions (`bool`, *optional*):
1332
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1333
+ tensors for more detail.
1334
+ output_hidden_states (`bool`, *optional*):
1335
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1336
+ more detail.
1337
+ return_dict (`bool`, *optional*):
1338
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1339
+ """
1340
+
1341
+
1342
+ @add_start_docstrings(
1343
+ "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
1344
+ DeepseekV3_START_DOCSTRING,
1345
+ )
1346
+ class DeepseekV3Model(DeepseekV3PreTrainedModel):
1347
+ """
1348
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV3DecoderLayer`]
1349
+
1350
+ Args:
1351
+ config: DeepseekV3Config
1352
+ """
1353
+
1354
+ def __init__(self, config: DeepseekV3Config):
1355
+ super().__init__(config)
1356
+ self.padding_idx = config.pad_token_id
1357
+ self.vocab_size = config.vocab_size
1358
+
1359
+ self.embed_tokens = nn.Embedding(
1360
+ config.vocab_size, config.hidden_size, self.padding_idx
1361
+ )
1362
+ self.layers = nn.ModuleList(
1363
+ [
1364
+ DeepseekV3DecoderLayer(config, layer_idx)
1365
+ for layer_idx in range(config.num_hidden_layers)
1366
+ ]
1367
+ )
1368
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1369
+ self.norm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1370
+
1371
+ self.gradient_checkpointing = False
1372
+ # Initialize weights and apply final processing
1373
+ self.post_init()
1374
+
1375
+ def get_input_embeddings(self):
1376
+ return self.embed_tokens
1377
+
1378
+ def set_input_embeddings(self, value):
1379
+ self.embed_tokens = value
1380
+
1381
+ @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
1382
+ def forward(
1383
+ self,
1384
+ input_ids: torch.LongTensor = None,
1385
+ attention_mask: Optional[torch.Tensor] = None,
1386
+ position_ids: Optional[torch.LongTensor] = None,
1387
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1388
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1389
+ use_cache: Optional[bool] = None,
1390
+ output_attentions: Optional[bool] = None,
1391
+ output_hidden_states: Optional[bool] = None,
1392
+ return_dict: Optional[bool] = None,
1393
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1394
+ output_attentions = (
1395
+ output_attentions
1396
+ if output_attentions is not None
1397
+ else self.config.output_attentions
1398
+ )
1399
+ output_hidden_states = (
1400
+ output_hidden_states
1401
+ if output_hidden_states is not None
1402
+ else self.config.output_hidden_states
1403
+ )
1404
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1405
+
1406
+ return_dict = (
1407
+ return_dict if return_dict is not None else self.config.use_return_dict
1408
+ )
1409
+
1410
+ # retrieve input_ids and inputs_embeds
1411
+ if input_ids is not None and inputs_embeds is not None:
1412
+ raise ValueError(
1413
+ "You cannot specify both input_ids and inputs_embeds at the same time"
1414
+ )
1415
+ elif input_ids is not None:
1416
+ batch_size, seq_length = input_ids.shape[:2]
1417
+ elif inputs_embeds is not None:
1418
+ batch_size, seq_length = inputs_embeds.shape[:2]
1419
+ else:
1420
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1421
+
1422
+ past_key_values_length = 0
1423
+ if use_cache:
1424
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1425
+ if use_legacy_cache:
1426
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1427
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1428
+
1429
+ if position_ids is None:
1430
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1431
+ position_ids = torch.arange(
1432
+ past_key_values_length,
1433
+ seq_length + past_key_values_length,
1434
+ dtype=torch.long,
1435
+ device=device,
1436
+ )
1437
+ position_ids = position_ids.unsqueeze(0)
1438
+
1439
+ if inputs_embeds is None:
1440
+ inputs_embeds = self.embed_tokens(input_ids)
1441
+
1442
+ if self._use_flash_attention_2:
1443
+ # 2d mask is passed through the layers
1444
+ attention_mask = (
1445
+ attention_mask
1446
+ if (attention_mask is not None and 0 in attention_mask)
1447
+ else None
1448
+ )
1449
+ else:
1450
+ # 4d mask is passed through the layers
1451
+ attention_mask = _prepare_4d_causal_attention_mask(
1452
+ attention_mask,
1453
+ (batch_size, seq_length),
1454
+ inputs_embeds,
1455
+ past_key_values_length,
1456
+ )
1457
+
1458
+ # embed positions
1459
+ hidden_states = inputs_embeds
1460
+
1461
+ # decoder layers
1462
+ all_hidden_states = () if output_hidden_states else None
1463
+ all_self_attns = () if output_attentions else None
1464
+ next_decoder_cache = None
1465
+
1466
+ for decoder_layer in self.layers:
1467
+ if output_hidden_states:
1468
+ all_hidden_states += (hidden_states,)
1469
+
1470
+ layer_outputs = decoder_layer(
1471
+ hidden_states,
1472
+ attention_mask=attention_mask,
1473
+ position_ids=position_ids,
1474
+ past_key_value=past_key_values,
1475
+ output_attentions=output_attentions,
1476
+ use_cache=use_cache,
1477
+ )
1478
+
1479
+ hidden_states = layer_outputs[0]
1480
+
1481
+ if use_cache:
1482
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1483
+
1484
+ if output_attentions:
1485
+ all_self_attns += (layer_outputs[1],)
1486
+
1487
+ hidden_states = self.norm(hidden_states)
1488
+
1489
+ # add hidden states from the last decoder layer
1490
+ if output_hidden_states:
1491
+ all_hidden_states += (hidden_states,)
1492
+
1493
+ next_cache = None
1494
+ if use_cache:
1495
+ next_cache = (
1496
+ next_decoder_cache.to_legacy_cache()
1497
+ if use_legacy_cache
1498
+ else next_decoder_cache
1499
+ )
1500
+ if not return_dict:
1501
+ return tuple(
1502
+ v
1503
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
1504
+ if v is not None
1505
+ )
1506
+ return BaseModelOutputWithPast(
1507
+ last_hidden_state=hidden_states,
1508
+ past_key_values=next_cache,
1509
+ hidden_states=all_hidden_states,
1510
+ attentions=all_self_attns,
1511
+ )
1512
+
1513
+
1514
+ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel):
1515
+ _tied_weights_keys = ["lm_head.weight"]
1516
+
1517
+ def __init__(self, config):
1518
+ super().__init__(config)
1519
+ self.model = DeepseekV3Model(config)
1520
+ self.vocab_size = config.vocab_size
1521
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1522
+
1523
+ # Initialize weights and apply final processing
1524
+ self.post_init()
1525
+
1526
+ def get_input_embeddings(self):
1527
+ return self.model.embed_tokens
1528
+
1529
+ def set_input_embeddings(self, value):
1530
+ self.model.embed_tokens = value
1531
+
1532
+ def get_output_embeddings(self):
1533
+ return self.lm_head
1534
+
1535
+ def set_output_embeddings(self, new_embeddings):
1536
+ self.lm_head = new_embeddings
1537
+
1538
+ def set_decoder(self, decoder):
1539
+ self.model = decoder
1540
+
1541
+ def get_decoder(self):
1542
+ return self.model
1543
+
1544
+ @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
1545
+ @replace_return_docstrings(
1546
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
1547
+ )
1548
+ def forward(
1549
+ self,
1550
+ input_ids: torch.LongTensor = None,
1551
+ attention_mask: Optional[torch.Tensor] = None,
1552
+ position_ids: Optional[torch.LongTensor] = None,
1553
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1554
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1555
+ labels: Optional[torch.LongTensor] = None,
1556
+ use_cache: Optional[bool] = None,
1557
+ output_attentions: Optional[bool] = None,
1558
+ output_hidden_states: Optional[bool] = None,
1559
+ return_dict: Optional[bool] = None,
1560
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1561
+ r"""
1562
+ Args:
1563
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1564
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
1565
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1566
+ (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
1567
+
1568
+ Returns:
1569
+
1570
+ Example:
1571
+
1572
+ ```python
1573
+ >>> from transformers import AutoTokenizer, DeepseekV3ForCausalLM
1574
+
1575
+ >>> model = DeepseekV3ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1576
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1577
+
1578
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1579
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1580
+
1581
+ >>> # Generate
1582
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1583
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1584
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1585
+ ```"""
1586
+ output_attentions = (
1587
+ output_attentions
1588
+ if output_attentions is not None
1589
+ else self.config.output_attentions
1590
+ )
1591
+ output_hidden_states = (
1592
+ output_hidden_states
1593
+ if output_hidden_states is not None
1594
+ else self.config.output_hidden_states
1595
+ )
1596
+ return_dict = (
1597
+ return_dict if return_dict is not None else self.config.use_return_dict
1598
+ )
1599
+
1600
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1601
+ outputs = self.model(
1602
+ input_ids=input_ids,
1603
+ attention_mask=attention_mask,
1604
+ position_ids=position_ids,
1605
+ past_key_values=past_key_values,
1606
+ inputs_embeds=inputs_embeds,
1607
+ use_cache=use_cache,
1608
+ output_attentions=output_attentions,
1609
+ output_hidden_states=output_hidden_states,
1610
+ return_dict=return_dict,
1611
+ )
1612
+
1613
+ hidden_states = outputs[0]
1614
+ logits = self.lm_head(hidden_states)
1615
+ logits = logits.float()
1616
+
1617
+ loss = None
1618
+ if labels is not None:
1619
+ # Shift so that tokens < n predict n
1620
+ shift_logits = logits[..., :-1, :].contiguous()
1621
+ shift_labels = labels[..., 1:].contiguous()
1622
+ # Flatten the tokens
1623
+ loss_fct = CrossEntropyLoss()
1624
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1625
+ shift_labels = shift_labels.view(-1)
1626
+ # Enable model parallelism
1627
+ shift_labels = shift_labels.to(shift_logits.device)
1628
+ loss = loss_fct(shift_logits, shift_labels)
1629
+
1630
+ if not return_dict:
1631
+ output = (logits,) + outputs[1:]
1632
+ return (loss,) + output if loss is not None else output
1633
+
1634
+ return CausalLMOutputWithPast(
1635
+ loss=loss,
1636
+ logits=logits,
1637
+ past_key_values=outputs.past_key_values,
1638
+ hidden_states=outputs.hidden_states,
1639
+ attentions=outputs.attentions,
1640
+ )
1641
+
1642
+ def prepare_inputs_for_generation(
1643
+ self,
1644
+ input_ids,
1645
+ past_key_values=None,
1646
+ attention_mask=None,
1647
+ inputs_embeds=None,
1648
+ **kwargs,
1649
+ ):
1650
+ if past_key_values is not None:
1651
+ if isinstance(past_key_values, Cache):
1652
+ cache_length = past_key_values.get_seq_length()
1653
+ past_length = past_key_values.seen_tokens
1654
+ max_cache_length = past_key_values.get_max_length()
1655
+ else:
1656
+ cache_length = past_length = past_key_values[0][0].shape[2]
1657
+ max_cache_length = None
1658
+
1659
+ # Keep only the unprocessed tokens:
1660
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1661
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1662
+ # input)
1663
+ if (
1664
+ attention_mask is not None
1665
+ and attention_mask.shape[1] > input_ids.shape[1]
1666
+ ):
1667
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1668
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1669
+ # input_ids based on the past_length.
1670
+ elif past_length < input_ids.shape[1]:
1671
+ input_ids = input_ids[:, past_length:]
1672
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1673
+
1674
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1675
+ if (
1676
+ max_cache_length is not None
1677
+ and attention_mask is not None
1678
+ and cache_length + input_ids.shape[1] > max_cache_length
1679
+ ):
1680
+ attention_mask = attention_mask[:, -max_cache_length:]
1681
+
1682
+ position_ids = kwargs.get("position_ids", None)
1683
+ if attention_mask is not None and position_ids is None:
1684
+ # create position_ids on the fly for batch generation
1685
+ position_ids = attention_mask.long().cumsum(-1) - 1
1686
+ position_ids.masked_fill_(attention_mask == 0, 1)
1687
+ if past_key_values:
1688
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1689
+
1690
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1691
+ if inputs_embeds is not None and past_key_values is None:
1692
+ model_inputs = {"inputs_embeds": inputs_embeds}
1693
+ else:
1694
+ model_inputs = {"input_ids": input_ids}
1695
+
1696
+ model_inputs.update(
1697
+ {
1698
+ "position_ids": position_ids,
1699
+ "past_key_values": past_key_values,
1700
+ "use_cache": kwargs.get("use_cache"),
1701
+ "attention_mask": attention_mask,
1702
+ }
1703
+ )
1704
+ return model_inputs
1705
+
1706
+ @staticmethod
1707
+ def _reorder_cache(past_key_values, beam_idx):
1708
+ reordered_past = ()
1709
+ for layer_past in past_key_values:
1710
+ reordered_past += (
1711
+ tuple(
1712
+ past_state.index_select(0, beam_idx.to(past_state.device))
1713
+ for past_state in layer_past
1714
+ ),
1715
+ )
1716
+ return reordered_past
1717
+
1718
+
1719
+ @add_start_docstrings(
1720
+ """
1721
+ The DeepseekV3 Model transformer with a sequence classification head on top (linear layer).
1722
+
1723
+ [`DeepseekV3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1724
+ (e.g. GPT-2) do.
1725
+
1726
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1727
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1728
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1729
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1730
+ each row of the batch).
1731
+ """,
1732
+ DeepseekV3_START_DOCSTRING,
1733
+ )
1734
+ class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
1735
+ def __init__(self, config):
1736
+ super().__init__(config)
1737
+ self.num_labels = config.num_labels
1738
+ self.model = DeepseekV3Model(config)
1739
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1740
+
1741
+ # Initialize weights and apply final processing
1742
+ self.post_init()
1743
+
1744
+ def get_input_embeddings(self):
1745
+ return self.model.embed_tokens
1746
+
1747
+ def set_input_embeddings(self, value):
1748
+ self.model.embed_tokens = value
1749
+
1750
+ @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
1751
+ def forward(
1752
+ self,
1753
+ input_ids: torch.LongTensor = None,
1754
+ attention_mask: Optional[torch.Tensor] = None,
1755
+ position_ids: Optional[torch.LongTensor] = None,
1756
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1757
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1758
+ labels: Optional[torch.LongTensor] = None,
1759
+ use_cache: Optional[bool] = None,
1760
+ output_attentions: Optional[bool] = None,
1761
+ output_hidden_states: Optional[bool] = None,
1762
+ return_dict: Optional[bool] = None,
1763
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1764
+ r"""
1765
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1766
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
1767
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1768
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1769
+ """
1770
+ return_dict = (
1771
+ return_dict if return_dict is not None else self.config.use_return_dict
1772
+ )
1773
+
1774
+ transformer_outputs = self.model(
1775
+ input_ids,
1776
+ attention_mask=attention_mask,
1777
+ position_ids=position_ids,
1778
+ past_key_values=past_key_values,
1779
+ inputs_embeds=inputs_embeds,
1780
+ use_cache=use_cache,
1781
+ output_attentions=output_attentions,
1782
+ output_hidden_states=output_hidden_states,
1783
+ return_dict=return_dict,
1784
+ )
1785
+ hidden_states = transformer_outputs[0]
1786
+ logits = self.score(hidden_states)
1787
+
1788
+ if input_ids is not None:
1789
+ batch_size = input_ids.shape[0]
1790
+ else:
1791
+ batch_size = inputs_embeds.shape[0]
1792
+
1793
+ if self.config.pad_token_id is None and batch_size != 1:
1794
+ raise ValueError(
1795
+ "Cannot handle batch sizes > 1 if no padding token is defined."
1796
+ )
1797
+ if self.config.pad_token_id is None:
1798
+ sequence_lengths = -1
1799
+ else:
1800
+ if input_ids is not None:
1801
+ sequence_lengths = (
1802
+ torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1803
+ ).to(logits.device)
1804
+ else:
1805
+ sequence_lengths = -1
1806
+
1807
+ pooled_logits = logits[
1808
+ torch.arange(batch_size, device=logits.device), sequence_lengths
1809
+ ]
1810
+
1811
+ loss = None
1812
+ if labels is not None:
1813
+ labels = labels.to(logits.device)
1814
+ if self.config.problem_type is None:
1815
+ if self.num_labels == 1:
1816
+ self.config.problem_type = "regression"
1817
+ elif self.num_labels > 1 and (
1818
+ labels.dtype == torch.long or labels.dtype == torch.int
1819
+ ):
1820
+ self.config.problem_type = "single_label_classification"
1821
+ else:
1822
+ self.config.problem_type = "multi_label_classification"
1823
+
1824
+ if self.config.problem_type == "regression":
1825
+ loss_fct = MSELoss()
1826
+ if self.num_labels == 1:
1827
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1828
+ else:
1829
+ loss = loss_fct(pooled_logits, labels)
1830
+ elif self.config.problem_type == "single_label_classification":
1831
+ loss_fct = CrossEntropyLoss()
1832
+ loss = loss_fct(
1833
+ pooled_logits.view(-1, self.num_labels), labels.view(-1)
1834
+ )
1835
+ elif self.config.problem_type == "multi_label_classification":
1836
+ loss_fct = BCEWithLogitsLoss()
1837
+ loss = loss_fct(pooled_logits, labels)
1838
+ if not return_dict:
1839
+ output = (pooled_logits,) + transformer_outputs[1:]
1840
+ return ((loss,) + output) if loss is not None else output
1841
+
1842
+ return SequenceClassifierOutputWithPast(
1843
+ loss=loss,
1844
+ logits=pooled_logits,
1845
+ past_key_values=transformer_outputs.past_key_values,
1846
+ hidden_states=transformer_outputs.hidden_states,
1847
+ attentions=transformer_outputs.attentions,
1848
+ )
tokenizer_config.json CHANGED
@@ -31,5 +31,5 @@
31
  "sp_model_kwargs": {},
32
  "unk_token": null,
33
  "tokenizer_class": "LlamaTokenizerFast",
34
- "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='', is_first_sp=true) %}{%- for message in messages %}{%- if message['role'] == 'system' %}{%- if ns.is_first_sp %}{% set ns.system_prompt = ns.system_prompt + message['content'] %}{% set ns.is_first_sp = false %}{%- else %}{% set ns.system_prompt = ns.system_prompt + '\\n\\n' + message['content'] %}{%- endif %}{%- endif %}{%- endfor %}{{ bos_token }}{{ ns.system_prompt }}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and 'tool_calls' in message %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls'] %}{%- if not ns.is_first %}{%- if message['content'] is none %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- else %}{{'<|Assistant|>' + message['content'] + '<|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- endif %}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- endif %}{%- endfor %}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- if message['role'] == 'assistant' and 'tool_calls' not in message %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}"
35
  }
 
31
  "sp_model_kwargs": {},
32
  "unk_token": null,
33
  "tokenizer_class": "LlamaTokenizerFast",
34
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='', is_first_sp=true, is_last_user=false) %}{%- for message in messages %}{%- if message['role'] == 'system' %}{%- if ns.is_first_sp %}{% set ns.system_prompt = ns.system_prompt + message['content'] %}{% set ns.is_first_sp = false %}{%- else %}{% set ns.system_prompt = ns.system_prompt + '\n\n' + message['content'] %}{%- endif %}{%- endif %}{%- endfor %}{{ bos_token }}{{ ns.system_prompt }}{%- for message in messages %}{% set content = message['content'] %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{%- set ns.is_first = false -%}{%- set ns.is_last_user = true -%}{{'<|User|>' + content + '<|Assistant|>'}}{%- endif %}{%- if message['role'] == 'assistant' %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{% endif %}{%- if message['role'] == 'assistant' and message['tool_calls'] is defined and message['tool_calls'] is not none %}{%- set ns.is_last_user = false -%}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{%- endif %}{%- set ns.is_first = false %}{%- set ns.is_tool = false -%}{%- set ns.is_output_first = true %}{%- for tool in message['tool_calls'] %}{%- if not ns.is_first %}{%- if content is none %}{{'<|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + '<|tool▁call▁end|>'}}{%- else %}{{content + '<|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + '<|tool▁call▁end|>'}}{%- endif %}{%- set ns.is_first = true -%}{%- else %}{{'\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + '<|tool▁call▁end|>'}}{%- endif %}{%- endfor %}{{'<|tool▁calls▁end|><|end▁of▁sentence���>'}}{%- endif %}{%- if message['role'] == 'assistant' and (message['tool_calls'] is not defined or message['tool_calls'] is none)%}{%- set ns.is_last_user = false -%}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + content + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{{content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_last_user = false -%}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + content + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\n<|tool▁output▁begin|>' + content + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_last_user and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}"
35
  }