File size: 7,389 Bytes
846b34e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch
import tilelang
import tilelang.language as T
from typing import Tuple, Optional


tilelang.set_log_level("WARNING")

pass_configs = {
    tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
    tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
    tilelang.PassConfigKey.TL_DISABLE_FAST_MATH: True,
}

FP8 = "float8_e4m3"
BF16 = "bfloat16"
FP32 = "float32"


def fast_log2_ceil(x):
    bits_x = T.reinterpret("uint32", x)
    exp_x = (bits_x >> 23) & 0xFF
    man_bits = bits_x & ((1 << 23) - 1)
    return T.Cast("int32", exp_x - 127 + T.if_then_else(man_bits != 0, 1, 0))


def fast_pow2(x):
    bits_x = (x + 127) << 23
    return T.reinterpret("float32", bits_x)


def fast_round_scale(amax, fp8_max_inv):
    return fast_pow2(fast_log2_ceil(amax * fp8_max_inv))


@tilelang.jit(pass_configs=pass_configs)
def act_quant_kernel(
    N, in_dtype=BF16, out_dtype=FP8, scale_dtype=FP32, round_scale=False
):
    M = T.symbolic("M")
    fp8_min = -448.0
    fp8_max = 448.0
    fp8_max_inv = 1 / fp8_max
    num_stages = 0 if round_scale else 2
    blk_m = 32
    group_size = 128

    @T.prim_func
    def act_quant_kernel_(
        X: T.Tensor[(M, N), in_dtype],
        Y: T.Tensor[(M, N), out_dtype],
        S: T.Tensor[(M, T.ceildiv(N, group_size)), scale_dtype],
    ):
        with T.Kernel(T.ceildiv(M, blk_m), T.ceildiv(N, group_size), threads=128) as (
            pid_m,
            pid_n,
        ):
            x_shared = T.alloc_shared((blk_m, group_size), in_dtype)
            x_local = T.alloc_fragment((blk_m, group_size), in_dtype)
            amax_local = T.alloc_fragment((blk_m,), scale_dtype)
            s_local = T.alloc_fragment((blk_m,), scale_dtype)
            y_local = T.alloc_fragment((blk_m, group_size), out_dtype)
            y_shared = T.alloc_shared((blk_m, group_size), out_dtype)

            for _ in T.Pipelined(1, num_stages=num_stages):
                T.copy(X[pid_m * blk_m, pid_n * group_size], x_shared)
                T.copy(x_shared, x_local)
                T.reduce_absmax(x_local, amax_local, dim=1)
                for i in T.Parallel(blk_m):
                    amax_local[i] = T.max(amax_local[i], 1e-4)
                    if round_scale:
                        s_local[i] = fast_round_scale(amax_local[i], fp8_max_inv)
                    else:
                        s_local[i] = amax_local[i] * fp8_max_inv
                for i, j in T.Parallel(blk_m, group_size):
                    y_local[i, j] = T.clamp(
                        x_local[i, j] / s_local[i], fp8_min, fp8_max
                    )
                for i in T.Parallel(blk_m):
                    S[pid_m * blk_m + i, pid_n] = s_local[i]
                T.copy(y_local, y_shared)
                T.copy(y_shared, Y[pid_m * blk_m, pid_n * group_size])

    return act_quant_kernel_


def act_quant(
    x: torch.Tensor, block_size: int = 128, scale_fmt: Optional[str] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Quantizes the input tensor `x` using block-wise quantization.

    Args:
        x (torch.Tensor): The input tensor to be quantized. Must be contiguous and its last dimension size must be divisible by `block_size`.
        block_size (int, optional): The size of the blocks to be used for quantization. Default is 128.
        scale_fmt (Optional[str], optional): The format of the scale. Default is None.
    Returns:
        Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
            - The quantized tensor with dtype `torch.float8_e4m3fn`.
            - A tensor of scaling factors with dtype `torch.float32`.
    """
    assert x.is_contiguous(), "Input tensor must be contiguous"
    assert x.size(-1) % block_size == 0, (
        f"Last dimension size must be divisible by block_size (block_size={block_size})"
    )
    N = x.size(-1)
    y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
    s = x.new_empty(*x.size()[:-1], N // block_size, dtype=torch.float32)
    kernel = act_quant_kernel(N, round_scale=scale_fmt is not None)
    kernel(x.view(-1, N), y.view(-1, N), s.view(-1, N // block_size))
    return y, s


@tilelang.jit(pass_configs=pass_configs)
def fp8_gemm_kernel(N, K, out_dtype=BF16, accum_dtype="float32"):
    assert out_dtype in [BF16, "float32"]

    M = T.symbolic("M")
    group_size = 128
    block_M = 32
    block_N = 128
    block_K = 128

    @T.prim_func
    def fp8_gemm_kernel_(
        A: T.Tensor[(M, K), FP8],
        B: T.Tensor[(N, K), FP8],
        C: T.Tensor[(M, N), out_dtype],
        scales_a: T.Tensor[(M, T.ceildiv(K, group_size)), FP32],
        scales_b: T.Tensor[(T.ceildiv(N, group_size), T.ceildiv(K, group_size)), FP32],
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (
            bx,
            by,
        ):
            A_shared = T.alloc_shared((block_M, block_K), FP8)
            B_shared = T.alloc_shared((block_N, block_K), FP8)
            C_shared = T.alloc_shared((block_M, block_N), out_dtype)
            Scale_C_shared = T.alloc_shared((block_M), FP32)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            C_local_accum = T.alloc_fragment((block_M, block_N), accum_dtype)

            # Improve L2 Cache
            T.use_swizzle(panel_size=10)

            T.clear(C_local)
            T.clear(C_local_accum)
            K_iters = T.ceildiv(K, block_K)
            for k in T.Pipelined(K_iters, num_stages=4):
                # Load A into shared memory
                T.copy(A[by * block_M, k * block_K], A_shared)
                # Load B into shared memory
                T.copy(B[bx * block_N, k * block_K], B_shared)
                # Load scale into shared memory
                Scale_B = scales_b[bx * block_N // group_size, k]
                for i in T.Parallel(block_M):
                    Scale_C_shared[i] = scales_a[by * block_M + i, k] * Scale_B

                T.gemm(A_shared, B_shared, C_local, transpose_B=True)
                # Promote to enable 2xAcc
                for i, j in T.Parallel(block_M, block_N):
                    C_local_accum[i, j] += C_local[i, j] * Scale_C_shared[i]
                T.clear(C_local)
            # TMA store
            T.copy(C_local_accum, C_shared)
            T.copy(C_shared, C[by * block_M, bx * block_N])

    return fp8_gemm_kernel_


def fp8_gemm(
    a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor
) -> torch.Tensor:
    """
    Perform a matrix multiplication using FP8 precision.

    Args:
        a (torch.Tensor): The first input matrix, must be contiguous.
        a_s (torch.Tensor): The scaling factor for the first input matrix, must be contiguous.
        b (torch.Tensor): The second input matrix, must be contiguous.
        b_s (torch.Tensor): The scaling factor for the second input matrix, must be contiguous.

    Returns:
        torch.Tensor: The result of the matrix multiplication.
    """
    assert a.is_contiguous() and b.is_contiguous(), "Input tensors must be contiguous"
    assert a_s.is_contiguous() and b_s.is_contiguous(), (
        "Scaling factor tensors must be contiguous"
    )
    K = a.size(-1)
    M = a.numel() // K
    N = b.size(0)
    c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype())
    kernel = fp8_gemm_kernel(N, K)
    kernel(a.view(M, K), b, c.view(M, N), a_s.view(M, -1), b_s)
    return c