GeeeekExplorer's picture
Update inference/kernel.py
74b7f11 verified
raw
history blame
7.39 kB
import torch
import tilelang
import tilelang.language as T
from typing import Tuple, Optional
tilelang.set_log_level("WARNING")
pass_configs = {
tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
tilelang.PassConfigKey.TL_DISABLE_FAST_MATH: True,
}
FP8 = "float8_e4m3"
BF16 = "bfloat16"
FP32 = "float32"
def fast_log2_ceil(x):
bits_x = T.reinterpret("uint32", x)
exp_x = (bits_x >> 23) & 0xFF
man_bits = bits_x & ((1 << 23) - 1)
return T.Cast("int32", exp_x - 127 + T.if_then_else(man_bits != 0, 1, 0))
def fast_pow2(x):
bits_x = (x + 127) << 23
return T.reinterpret("float32", bits_x)
def fast_round_scale(amax, fp8_max_inv):
return fast_pow2(fast_log2_ceil(amax * fp8_max_inv))
@tilelang.jit(pass_configs=pass_configs)
def act_quant_kernel(
N, in_dtype=BF16, out_dtype=FP8, scale_dtype=FP32, round_scale=False
):
M = T.symbolic("M")
fp8_min = -448.0
fp8_max = 448.0
fp8_max_inv = 1 / fp8_max
num_stages = 0 if round_scale else 2
blk_m = 32
group_size = 128
@T.prim_func
def act_quant_kernel_(
X: T.Tensor[(M, N), in_dtype],
Y: T.Tensor[(M, N), out_dtype],
S: T.Tensor[(M, T.ceildiv(N, group_size)), scale_dtype],
):
with T.Kernel(T.ceildiv(M, blk_m), T.ceildiv(N, group_size), threads=128) as (
pid_m,
pid_n,
):
x_shared = T.alloc_shared((blk_m, group_size), in_dtype)
x_local = T.alloc_fragment((blk_m, group_size), in_dtype)
amax_local = T.alloc_fragment((blk_m,), scale_dtype)
s_local = T.alloc_fragment((blk_m,), scale_dtype)
y_local = T.alloc_fragment((blk_m, group_size), out_dtype)
y_shared = T.alloc_shared((blk_m, group_size), out_dtype)
for _ in T.Pipelined(1, num_stages=num_stages):
T.copy(X[pid_m * blk_m, pid_n * group_size], x_shared)
T.copy(x_shared, x_local)
T.reduce_absmax(x_local, amax_local, dim=1)
for i in T.Parallel(blk_m):
amax_local[i] = T.max(amax_local[i], 1e-4)
if round_scale:
s_local[i] = fast_round_scale(amax_local[i], fp8_max_inv)
else:
s_local[i] = amax_local[i] * fp8_max_inv
for i, j in T.Parallel(blk_m, group_size):
y_local[i, j] = T.clamp(
x_local[i, j] / s_local[i], fp8_min, fp8_max
)
for i in T.Parallel(blk_m):
S[pid_m * blk_m + i, pid_n] = s_local[i]
T.copy(y_local, y_shared)
T.copy(y_shared, Y[pid_m * blk_m, pid_n * group_size])
return act_quant_kernel_
def act_quant(
x: torch.Tensor, block_size: int = 128, scale_fmt: Optional[str] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Quantizes the input tensor `x` using block-wise quantization.
Args:
x (torch.Tensor): The input tensor to be quantized. Must be contiguous and its last dimension size must be divisible by `block_size`.
block_size (int, optional): The size of the blocks to be used for quantization. Default is 128.
scale_fmt (Optional[str], optional): The format of the scale. Default is None.
Returns:
Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
- The quantized tensor with dtype `torch.float8_e4m3fn`.
- A tensor of scaling factors with dtype `torch.float32`.
"""
assert x.is_contiguous(), "Input tensor must be contiguous"
assert x.size(-1) % block_size == 0, (
f"Last dimension size must be divisible by block_size (block_size={block_size})"
)
N = x.size(-1)
y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
s = x.new_empty(*x.size()[:-1], N // block_size, dtype=torch.float32)
kernel = act_quant_kernel(N, round_scale=scale_fmt is not None)
kernel(x.view(-1, N), y.view(-1, N), s.view(-1, N // block_size))
return y, s
@tilelang.jit(pass_configs=pass_configs)
def fp8_gemm_kernel(N, K, out_dtype=BF16, accum_dtype="float32"):
assert out_dtype in [BF16, "float32"]
M = T.symbolic("M")
group_size = 128
block_M = 32
block_N = 128
block_K = 128
@T.prim_func
def fp8_gemm_kernel_(
A: T.Tensor[(M, K), FP8],
B: T.Tensor[(N, K), FP8],
C: T.Tensor[(M, N), out_dtype],
scales_a: T.Tensor[(M, T.ceildiv(K, group_size)), FP32],
scales_b: T.Tensor[(T.ceildiv(N, group_size), T.ceildiv(K, group_size)), FP32],
):
with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (
bx,
by,
):
A_shared = T.alloc_shared((block_M, block_K), FP8)
B_shared = T.alloc_shared((block_N, block_K), FP8)
C_shared = T.alloc_shared((block_M, block_N), out_dtype)
Scale_C_shared = T.alloc_shared((block_M), FP32)
C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
C_local_accum = T.alloc_fragment((block_M, block_N), accum_dtype)
# Improve L2 Cache
T.use_swizzle(panel_size=10)
T.clear(C_local)
T.clear(C_local_accum)
K_iters = T.ceildiv(K, block_K)
for k in T.Pipelined(K_iters, num_stages=4):
# Load A into shared memory
T.copy(A[by * block_M, k * block_K], A_shared)
# Load B into shared memory
T.copy(B[bx * block_N, k * block_K], B_shared)
# Load scale into shared memory
Scale_B = scales_b[bx * block_N // group_size, k]
for i in T.Parallel(block_M):
Scale_C_shared[i] = scales_a[by * block_M + i, k] * Scale_B
T.gemm(A_shared, B_shared, C_local, transpose_B=True)
# Promote to enable 2xAcc
for i, j in T.Parallel(block_M, block_N):
C_local_accum[i, j] += C_local[i, j] * Scale_C_shared[i]
T.clear(C_local)
# TMA store
T.copy(C_local_accum, C_shared)
T.copy(C_shared, C[by * block_M, bx * block_N])
return fp8_gemm_kernel_
def fp8_gemm(
a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor
) -> torch.Tensor:
"""
Perform a matrix multiplication using FP8 precision.
Args:
a (torch.Tensor): The first input matrix, must be contiguous.
a_s (torch.Tensor): The scaling factor for the first input matrix, must be contiguous.
b (torch.Tensor): The second input matrix, must be contiguous.
b_s (torch.Tensor): The scaling factor for the second input matrix, must be contiguous.
Returns:
torch.Tensor: The result of the matrix multiplication.
"""
assert a.is_contiguous() and b.is_contiguous(), "Input tensors must be contiguous"
assert a_s.is_contiguous() and b_s.is_contiguous(), (
"Scaling factor tensors must be contiguous"
)
K = a.size(-1)
M = a.numel() // K
N = b.size(0)
c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype())
kernel = fp8_gemm_kernel(N, K)
kernel(a.view(M, K), b, c.view(M, N), a_s.view(M, -1), b_s)
return c