Update README.md
Browse filesEditing model card
README.md
CHANGED
|
@@ -1,199 +1,149 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
|
| 7 |
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 1 |
---
|
| 2 |
+
license: mit
|
| 3 |
+
license_name: deepseek
|
| 4 |
+
license_link: LICENSE
|
| 5 |
+
pipeline_tag: any-to-any
|
| 6 |
library_name: transformers
|
| 7 |
+
tags:
|
| 8 |
+
- muiltimodal
|
| 9 |
+
- text-to-image
|
| 10 |
+
- unified-model
|
| 11 |
---
|
| 12 |
|
| 13 |
+
## 1. Introduction
|
| 14 |
|
| 15 |
+
Janus-Pro is a novel autoregressive framework that unifies multimodal understanding and generation.
|
| 16 |
+
It addresses the limitations of previous approaches by decoupling visual encoding into separate pathways, while still utilizing a single, unified transformer architecture for processing. The decoupling not only alleviates the conflict between the visual encoder’s roles in understanding and generation, but also enhances the framework’s flexibility.
|
| 17 |
+
Janus-Pro surpasses previous unified model and matches or exceeds the performance of task-specific models.
|
| 18 |
+
The simplicity, high flexibility, and effectiveness of Janus-Pro make it a strong candidate for next-generation unified multimodal models.
|
| 19 |
+
|
| 20 |
+
[**Github Repository**](https://github.com/deepseek-ai/Janus)
|
| 21 |
+
|
| 22 |
+
<div align="center">
|
| 23 |
+
<img alt="image" src="https://huggingface.co/deepseek-community/Janus-Pro-1B/resolve/main/janus_pro_teaser1.png" style="width:90%;">
|
| 24 |
+
</div>
|
| 25 |
+
|
| 26 |
+
<div align="center">
|
| 27 |
+
<img alt="image" src="https://huggingface.co/deepseek-community/Janus-Pro-1B/resolve/main/janus_pro_teaser2.png" style="width:90%;">
|
| 28 |
+
</div>
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
### 2. Model Summary
|
| 32 |
+
|
| 33 |
+
Janus-Pro is a unified understanding and generation MLLM, which decouples visual encoding for multimodal understanding and generation.
|
| 34 |
+
Janus-Pro is constructed based on the DeepSeek-LLM-1.5b-base/DeepSeek-LLM-7b-base.
|
| 35 |
+
|
| 36 |
+
For multimodal understanding, it uses the [SigLIP-L](https://huggingface.co/timm/ViT-L-16-SigLIP-384) as the vision encoder, which supports 384 x 384 image input. For image generation, Janus-Pro uses the tokenizer from [here](https://github.com/FoundationVision/LlamaGen) with a downsample rate of 16.
|
| 37 |
|
| 38 |
+
## 3. Usage Examples
|
| 39 |
+
|
| 40 |
+
### Single Image Inference
|
| 41 |
+
|
| 42 |
+
Here is an example of visual understanding with a single image.
|
| 43 |
+
|
| 44 |
+
```python
|
| 45 |
+
import torch
|
| 46 |
+
from PIL import Image
|
| 47 |
+
import requests
|
| 48 |
+
from transformers import JanusForConditionalGeneration, JanusProcessor
|
| 49 |
+
|
| 50 |
+
model_id = "deepseek-community/Janus-Pro-7B"
|
| 51 |
+
|
| 52 |
+
# Prepare input for generation
|
| 53 |
+
messages = [
|
| 54 |
+
{
|
| 55 |
+
"role": "user",
|
| 56 |
+
"content": [
|
| 57 |
+
{'type': 'image', 'url': 'http://images.cocodataset.org/val2017/000000039769.jpg'},
|
| 58 |
+
{'type': 'text', 'text': "What do you see in this image?"}
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
]
|
| 62 |
+
|
| 63 |
+
# Set generation mode to 'text' to perform text generation
|
| 64 |
+
processor = JanusProcessor.from_pretrained(model_id)
|
| 65 |
+
model = JanusForConditionalGeneration.from_pretrained(
|
| 66 |
+
model_id, torch_dtype=torch.bfloat16, device_map="auto"
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
inputs = processor.apply_chat_template(
|
| 70 |
+
messages,
|
| 71 |
+
add_generation_prompt=True,
|
| 72 |
+
generation_mode="text",
|
| 73 |
+
tokenize=True,
|
| 74 |
+
return_dict=True,
|
| 75 |
+
return_tensors="pt"
|
| 76 |
+
).to(model.device, dtype=torch.bfloat16)
|
| 77 |
+
|
| 78 |
+
output = model.generate(**inputs, max_new_tokens=40, generation_mode='text', do_sample=True)
|
| 79 |
+
text = processor.decode(output[0], skip_special_tokens=True)
|
| 80 |
+
print(text)
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
## Text to Image generation
|
| 84 |
+
Janus can also generate images from prompts by simply setting the generation mode to `image` as shown below.
|
| 85 |
+
|
| 86 |
+
```python
|
| 87 |
+
import torch
|
| 88 |
+
from transformers import JanusForConditionalGeneration, JanusProcessor
|
| 89 |
+
|
| 90 |
+
model_id = "deepseek-community/Janus-Pro-7B"
|
| 91 |
+
|
| 92 |
+
# Load processor and model
|
| 93 |
+
processor = JanusProcessor.from_pretrained(model_id)
|
| 94 |
+
model = JanusForConditionalGeneration.from_pretrained(
|
| 95 |
+
model_id, torch_dtype=torch.bfloat16, device_map="auto"
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
messages = [
|
| 99 |
+
{
|
| 100 |
+
"role": "user",
|
| 101 |
+
"content": [
|
| 102 |
+
{"type": "text", "text": "A dog running under the rain."}
|
| 103 |
+
]
|
| 104 |
+
}
|
| 105 |
+
]
|
| 106 |
+
|
| 107 |
+
# Apply chat template
|
| 108 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 109 |
+
inputs = processor(
|
| 110 |
+
text=prompt,
|
| 111 |
+
generation_mode="image",
|
| 112 |
+
return_tensors="pt"
|
| 113 |
+
).to(model.device, dtype=torch.bfloat16)
|
| 114 |
+
|
| 115 |
+
# Set number of images to generate
|
| 116 |
+
model.generation_config.num_return_sequences = 2
|
| 117 |
+
|
| 118 |
+
outputs = model.generate(
|
| 119 |
+
**inputs,
|
| 120 |
+
generation_mode="image",
|
| 121 |
+
do_sample=True,
|
| 122 |
+
use_cache=True
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# Decode and save images
|
| 126 |
+
decoded_image = model.decode_image_tokens(outputs)
|
| 127 |
+
images = processor.postprocess(list(decoded_image.float()), return_tensors="PIL.Image.Image")
|
| 128 |
+
|
| 129 |
+
for i, image in enumerate(images["pixel_values"]):
|
| 130 |
+
image.save(f"image{i}.png")
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
## 4. License
|
| 134 |
+
|
| 135 |
+
This code repository is licensed under [the MIT License](https://github.com/deepseek-ai/DeepSeek-LLM/blob/HEAD/LICENSE-CODE). The use of Janus-Pro models is subject to [DeepSeek Model License](https://github.com/deepseek-ai/DeepSeek-LLM/blob/HEAD/LICENSE-MODEL).
|
| 136 |
+
## 5. Citation
|
| 137 |
+
|
| 138 |
+
```
|
| 139 |
+
@article{chen2025janus,
|
| 140 |
+
title={Janus-Pro: Unified Multimodal Understanding and Generation with Data and Model Scaling},
|
| 141 |
+
author={Chen, Xiaokang and Wu, Zhiyu and Liu, Xingchao and Pan, Zizheng and Liu, Wen and Xie, Zhenda and Yu, Xingkai and Ruan, Chong},
|
| 142 |
+
journal={arXiv preprint arXiv:2501.17811},
|
| 143 |
+
year={2025}
|
| 144 |
+
}
|
| 145 |
+
```
|
| 146 |
+
|
| 147 |
+
## 6. Contact
|
| 148 |
+
|
| 149 |
+
If you have any questions, please raise an issue or contact us at [[email protected]](mailto:[email protected]).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|