roberta-base-squad2 / deepset_roberta-base-squad2.json
fatima113's picture
add AIBOM
35cafe7 verified
raw
history blame
10.9 kB
{
"bomFormat": "CycloneDX",
"specVersion": "1.6",
"serialNumber": "urn:uuid:cef2615a-e860-42b2-b351-7f8a5f49e535",
"version": 1,
"metadata": {
"timestamp": "2025-07-10T08:45:16.787707+00:00",
"component": {
"type": "machine-learning-model",
"bom-ref": "deepset/roberta-base-squad2-12395755-d71a-5489-a970-16cfa514aa95",
"name": "deepset/roberta-base-squad2",
"externalReferences": [
{
"url": "https://huggingface.co/deepset/roberta-base-squad2",
"type": "documentation"
}
],
"modelCard": {
"modelParameters": {
"task": "question-answering",
"architectureFamily": "roberta",
"modelArchitecture": "RobertaForQuestionAnswering",
"datasets": [
{
"ref": "squad_v2-9c72005c-340e-5f42-8f7a-ae0c57af7584"
}
]
},
"properties": [
{
"name": "library_name",
"value": "transformers"
},
{
"name": "base_model",
"value": "FacebookAI/roberta-base"
}
],
"quantitativeAnalysis": {
"performanceMetrics": [
{
"slice": "dataset: squad_v2, split: validation, config: squad_v2",
"type": "exact_match",
"value": 79.9309
},
{
"slice": "dataset: squad_v2, split: validation, config: squad_v2",
"type": "f1",
"value": 82.9501
},
{
"slice": "dataset: squad_v2, split: validation, config: squad_v2",
"type": "total",
"value": 11869
},
{
"slice": "dataset: squad, split: validation, config: plain_text",
"type": "exact_match",
"value": 85.289
},
{
"slice": "dataset: squad, split: validation, config: plain_text",
"type": "f1",
"value": 91.841
},
{
"slice": "dataset: adversarial_qa, split: validation, config: adversarialQA",
"type": "exact_match",
"value": 29.5
},
{
"slice": "dataset: adversarial_qa, split: validation, config: adversarialQA",
"type": "f1",
"value": 40.367
},
{
"slice": "dataset: squad_adversarial, split: validation, config: AddOneSent",
"type": "exact_match",
"value": 78.567
},
{
"slice": "dataset: squad_adversarial, split: validation, config: AddOneSent",
"type": "f1",
"value": 84.469
},
{
"slice": "dataset: squadshifts, split: test, config: amazon",
"type": "exact_match",
"value": 69.924
},
{
"slice": "dataset: squadshifts, split: test, config: amazon",
"type": "f1",
"value": 83.284
},
{
"slice": "dataset: squadshifts, split: test, config: new_wiki",
"type": "exact_match",
"value": 81.204
},
{
"slice": "dataset: squadshifts, split: test, config: new_wiki",
"type": "f1",
"value": 90.595
},
{
"slice": "dataset: squadshifts, split: test, config: nyt",
"type": "exact_match",
"value": 82.931
},
{
"slice": "dataset: squadshifts, split: test, config: nyt",
"type": "f1",
"value": 90.756
},
{
"slice": "dataset: squadshifts, split: test, config: reddit",
"type": "exact_match",
"value": 71.55
},
{
"slice": "dataset: squadshifts, split: test, config: reddit",
"type": "f1",
"value": 82.939
}
]
}
},
"authors": [
{
"name": "deepset"
}
],
"licenses": [
{
"license": {
"id": "CC-BY-4.0",
"url": "https://spdx.org/licenses/CC-BY-4.0.html"
}
}
],
"description": "**Language model:** roberta-base**Language:** English**Downstream-task:** Extractive QA**Training data:** SQuAD 2.0**Eval data:** SQuAD 2.0**Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline)**Infrastructure**: 4x Tesla v100",
"tags": [
"transformers",
"pytorch",
"tf",
"jax",
"rust",
"safetensors",
"roberta",
"question-answering",
"en",
"dataset:squad_v2",
"base_model:FacebookAI/roberta-base",
"base_model:finetune:FacebookAI/roberta-base",
"license:cc-by-4.0",
"model-index",
"endpoints_compatible",
"region:us"
]
}
},
"components": [
{
"type": "data",
"bom-ref": "squad_v2-9c72005c-340e-5f42-8f7a-ae0c57af7584",
"name": "squad_v2",
"data": [
{
"type": "dataset",
"bom-ref": "squad_v2-9c72005c-340e-5f42-8f7a-ae0c57af7584",
"name": "squad_v2",
"contents": {
"url": "https://huggingface.co/datasets/squad_v2",
"properties": [
{
"name": "task_categories",
"value": "question-answering"
},
{
"name": "task_ids",
"value": "open-domain-qa, extractive-qa"
},
{
"name": "language",
"value": "en"
},
{
"name": "size_categories",
"value": "100K<n<1M"
},
{
"name": "annotations_creators",
"value": "crowdsourced"
},
{
"name": "language_creators",
"value": "crowdsourced"
},
{
"name": "pretty_name",
"value": "SQuAD2.0"
},
{
"name": "source_datasets",
"value": "original"
},
{
"name": "paperswithcode_id",
"value": "squad"
},
{
"name": "configs",
"value": "Name of the dataset subset: squad_v2 {\"split\": \"train\", \"path\": \"squad_v2/train-*\"}, {\"split\": \"validation\", \"path\": \"squad_v2/validation-*\"}"
},
{
"name": "license",
"value": "cc-by-sa-4.0"
}
]
},
"governance": {
"owners": [
{
"organization": {
"name": "rajpurkar",
"url": "https://huggingface.co/rajpurkar"
}
}
]
},
"description": "\n\t\n\t\t\n\t\tDataset Card for SQuAD 2.0\n\t\n\n\n\t\n\t\t\n\t\tDataset Summary\n\t\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.\nSQuAD 2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers\u2026 See the full description on the dataset page: https://huggingface.co/datasets/rajpurkar/squad_v2."
}
]
}
]
}