|
{
|
|
"bomFormat": "CycloneDX",
|
|
"specVersion": "1.6",
|
|
"serialNumber": "urn:uuid:cef2615a-e860-42b2-b351-7f8a5f49e535",
|
|
"version": 1,
|
|
"metadata": {
|
|
"timestamp": "2025-07-10T08:45:16.787707+00:00",
|
|
"component": {
|
|
"type": "machine-learning-model",
|
|
"bom-ref": "deepset/roberta-base-squad2-12395755-d71a-5489-a970-16cfa514aa95",
|
|
"name": "deepset/roberta-base-squad2",
|
|
"externalReferences": [
|
|
{
|
|
"url": "https://huggingface.co/deepset/roberta-base-squad2",
|
|
"type": "documentation"
|
|
}
|
|
],
|
|
"modelCard": {
|
|
"modelParameters": {
|
|
"task": "question-answering",
|
|
"architectureFamily": "roberta",
|
|
"modelArchitecture": "RobertaForQuestionAnswering",
|
|
"datasets": [
|
|
{
|
|
"ref": "squad_v2-9c72005c-340e-5f42-8f7a-ae0c57af7584"
|
|
}
|
|
]
|
|
},
|
|
"properties": [
|
|
{
|
|
"name": "library_name",
|
|
"value": "transformers"
|
|
},
|
|
{
|
|
"name": "base_model",
|
|
"value": "FacebookAI/roberta-base"
|
|
}
|
|
],
|
|
"quantitativeAnalysis": {
|
|
"performanceMetrics": [
|
|
{
|
|
"slice": "dataset: squad_v2, split: validation, config: squad_v2",
|
|
"type": "exact_match",
|
|
"value": 79.9309
|
|
},
|
|
{
|
|
"slice": "dataset: squad_v2, split: validation, config: squad_v2",
|
|
"type": "f1",
|
|
"value": 82.9501
|
|
},
|
|
{
|
|
"slice": "dataset: squad_v2, split: validation, config: squad_v2",
|
|
"type": "total",
|
|
"value": 11869
|
|
},
|
|
{
|
|
"slice": "dataset: squad, split: validation, config: plain_text",
|
|
"type": "exact_match",
|
|
"value": 85.289
|
|
},
|
|
{
|
|
"slice": "dataset: squad, split: validation, config: plain_text",
|
|
"type": "f1",
|
|
"value": 91.841
|
|
},
|
|
{
|
|
"slice": "dataset: adversarial_qa, split: validation, config: adversarialQA",
|
|
"type": "exact_match",
|
|
"value": 29.5
|
|
},
|
|
{
|
|
"slice": "dataset: adversarial_qa, split: validation, config: adversarialQA",
|
|
"type": "f1",
|
|
"value": 40.367
|
|
},
|
|
{
|
|
"slice": "dataset: squad_adversarial, split: validation, config: AddOneSent",
|
|
"type": "exact_match",
|
|
"value": 78.567
|
|
},
|
|
{
|
|
"slice": "dataset: squad_adversarial, split: validation, config: AddOneSent",
|
|
"type": "f1",
|
|
"value": 84.469
|
|
},
|
|
{
|
|
"slice": "dataset: squadshifts, split: test, config: amazon",
|
|
"type": "exact_match",
|
|
"value": 69.924
|
|
},
|
|
{
|
|
"slice": "dataset: squadshifts, split: test, config: amazon",
|
|
"type": "f1",
|
|
"value": 83.284
|
|
},
|
|
{
|
|
"slice": "dataset: squadshifts, split: test, config: new_wiki",
|
|
"type": "exact_match",
|
|
"value": 81.204
|
|
},
|
|
{
|
|
"slice": "dataset: squadshifts, split: test, config: new_wiki",
|
|
"type": "f1",
|
|
"value": 90.595
|
|
},
|
|
{
|
|
"slice": "dataset: squadshifts, split: test, config: nyt",
|
|
"type": "exact_match",
|
|
"value": 82.931
|
|
},
|
|
{
|
|
"slice": "dataset: squadshifts, split: test, config: nyt",
|
|
"type": "f1",
|
|
"value": 90.756
|
|
},
|
|
{
|
|
"slice": "dataset: squadshifts, split: test, config: reddit",
|
|
"type": "exact_match",
|
|
"value": 71.55
|
|
},
|
|
{
|
|
"slice": "dataset: squadshifts, split: test, config: reddit",
|
|
"type": "f1",
|
|
"value": 82.939
|
|
}
|
|
]
|
|
}
|
|
},
|
|
"authors": [
|
|
{
|
|
"name": "deepset"
|
|
}
|
|
],
|
|
"licenses": [
|
|
{
|
|
"license": {
|
|
"id": "CC-BY-4.0",
|
|
"url": "https://spdx.org/licenses/CC-BY-4.0.html"
|
|
}
|
|
}
|
|
],
|
|
"description": "**Language model:** roberta-base**Language:** English**Downstream-task:** Extractive QA**Training data:** SQuAD 2.0**Eval data:** SQuAD 2.0**Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline)**Infrastructure**: 4x Tesla v100",
|
|
"tags": [
|
|
"transformers",
|
|
"pytorch",
|
|
"tf",
|
|
"jax",
|
|
"rust",
|
|
"safetensors",
|
|
"roberta",
|
|
"question-answering",
|
|
"en",
|
|
"dataset:squad_v2",
|
|
"base_model:FacebookAI/roberta-base",
|
|
"base_model:finetune:FacebookAI/roberta-base",
|
|
"license:cc-by-4.0",
|
|
"model-index",
|
|
"endpoints_compatible",
|
|
"region:us"
|
|
]
|
|
}
|
|
},
|
|
"components": [
|
|
{
|
|
"type": "data",
|
|
"bom-ref": "squad_v2-9c72005c-340e-5f42-8f7a-ae0c57af7584",
|
|
"name": "squad_v2",
|
|
"data": [
|
|
{
|
|
"type": "dataset",
|
|
"bom-ref": "squad_v2-9c72005c-340e-5f42-8f7a-ae0c57af7584",
|
|
"name": "squad_v2",
|
|
"contents": {
|
|
"url": "https://huggingface.co/datasets/squad_v2",
|
|
"properties": [
|
|
{
|
|
"name": "task_categories",
|
|
"value": "question-answering"
|
|
},
|
|
{
|
|
"name": "task_ids",
|
|
"value": "open-domain-qa, extractive-qa"
|
|
},
|
|
{
|
|
"name": "language",
|
|
"value": "en"
|
|
},
|
|
{
|
|
"name": "size_categories",
|
|
"value": "100K<n<1M"
|
|
},
|
|
{
|
|
"name": "annotations_creators",
|
|
"value": "crowdsourced"
|
|
},
|
|
{
|
|
"name": "language_creators",
|
|
"value": "crowdsourced"
|
|
},
|
|
{
|
|
"name": "pretty_name",
|
|
"value": "SQuAD2.0"
|
|
},
|
|
{
|
|
"name": "source_datasets",
|
|
"value": "original"
|
|
},
|
|
{
|
|
"name": "paperswithcode_id",
|
|
"value": "squad"
|
|
},
|
|
{
|
|
"name": "configs",
|
|
"value": "Name of the dataset subset: squad_v2 {\"split\": \"train\", \"path\": \"squad_v2/train-*\"}, {\"split\": \"validation\", \"path\": \"squad_v2/validation-*\"}"
|
|
},
|
|
{
|
|
"name": "license",
|
|
"value": "cc-by-sa-4.0"
|
|
}
|
|
]
|
|
},
|
|
"governance": {
|
|
"owners": [
|
|
{
|
|
"organization": {
|
|
"name": "rajpurkar",
|
|
"url": "https://huggingface.co/rajpurkar"
|
|
}
|
|
}
|
|
]
|
|
},
|
|
"description": "\n\t\n\t\t\n\t\tDataset Card for SQuAD 2.0\n\t\n\n\n\t\n\t\t\n\t\tDataset Summary\n\t\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.\nSQuAD 2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers\u2026 See the full description on the dataset page: https://huggingface.co/datasets/rajpurkar/squad_v2."
|
|
}
|
|
]
|
|
}
|
|
]
|
|
} |