#!/usr/bin/env python3 import os import csv import sys import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from transformers import ( AutoTokenizer, AutoModelForCausalLM, get_linear_schedule_with_warmup ) from peft import PeftModel from torch.cuda.amp import autocast, GradScaler from tqdm.auto import tqdm from multiprocessing import freeze_support class TripletDataset(Dataset): def __init__(self, path): self.samples = [] with open(path, newline="") as f: reader = csv.DictReader(f) for row in reader: a_ids = torch.tensor(list(map(int, row["a_ids"].split())), dtype=torch.long) a_mask = torch.tensor(list(map(int, row["a_mask"].split())), dtype=torch.long) p_ids = torch.tensor(list(map(int, row["p_ids"].split())), dtype=torch.long) p_mask = torch.tensor(list(map(int, row["p_mask"].split())), dtype=torch.long) n_ids = torch.tensor(list(map(int, row["n_ids"].split())), dtype=torch.long) n_mask = torch.tensor(list(map(int, row["n_mask"].split())), dtype=torch.long) self.samples.append((a_ids, a_mask, p_ids, p_mask, n_ids, n_mask)) def __len__(self): return len(self.samples) def __getitem__(self, idx): return self.samples[idx] def collate_fn(batch): return tuple(torch.stack(x) for x in zip(*batch)) def main(): # Config MODEL_NAME = "google/gemma-3-1b-pt" STAGE1_DIR = "stage1_simcse/final" TRAIN_FILE = "train.csv" VAL_FILE = "val.csv" BATCH_SIZE = 12 LR = 1e-5 WEIGHT_DECAY = 0.01 NUM_EPOCHS = 3 MARGIN = 0.2 OUTPUT_DIR = "phase2_triplet_amp" SEED = 42 os.makedirs(OUTPUT_DIR, exist_ok=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") torch.manual_seed(SEED) # Tokenizer & PEFT Model (load Stage 1) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True) base = AutoModelForCausalLM.from_pretrained(MODEL_NAME, attn_implementation="eager") peft_model = PeftModel.from_pretrained(base, STAGE1_DIR).to(device) # Embed + Projector (now outputs hidden_size) class GemmaTripletModel(nn.Module): def __init__(self, peft_model): super().__init__() self.peft = peft_model H = peft_model.config.hidden_size self.proj = nn.Sequential( nn.Linear(H, 512), nn.ReLU(), nn.Linear(512, H), ) def forward(self, ids, mask): out = self.peft.base_model( input_ids=ids, attention_mask=mask, output_hidden_states=True, return_dict=True ) last = out.hidden_states[-1] # (B, T, H) pooled = last.mean(dim=1) # mean pooling z = self.proj(pooled) # now (B, H) norm = z.norm(p=2, dim=1, keepdim=True).clamp_min(1e-6) return z / norm model = GemmaTripletModel(peft_model).to(device) # Datasets & Loaders train_ds = TripletDataset(TRAIN_FILE) val_ds = TripletDataset(VAL_FILE) train_loader = DataLoader(train_ds, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_fn) val_loader = DataLoader(val_ds, batch_size=BATCH_SIZE, shuffle=False, collate_fn=collate_fn) # Optimizer, Scheduler, AMP optimizer = torch.optim.AdamW(model.parameters(), lr=LR, weight_decay=WEIGHT_DECAY) total_steps = len(train_loader) * NUM_EPOCHS scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=int(0.1 * total_steps), num_training_steps=total_steps ) scaler = GradScaler() triplet_loss = nn.TripletMarginLoss(margin=MARGIN, p=2) # Training Loop for epoch in range(1, NUM_EPOCHS + 1): model.train() running_loss = 0.0 for a_ids, a_mask, p_ids, p_mask, n_ids, n_mask in tqdm(train_loader, desc=f"Train {epoch}", unit="batch"): a_ids, a_mask = a_ids.to(device), a_mask.to(device) p_ids, p_mask = p_ids.to(device), p_mask.to(device) n_ids, n_mask = n_ids.to(device), n_mask.to(device) optimizer.zero_grad() with autocast(): emb_a = model(a_ids, a_mask) emb_p = model(p_ids, p_mask) emb_n = model(n_ids, n_mask) loss = triplet_loss(emb_a, emb_p, emb_n) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() scheduler.step() running_loss += loss.item() print(f"Epoch {epoch} Train Loss: {running_loss/len(train_loader):.6f}") # Validation model.eval() val_loss = 0.0 with torch.no_grad(): for a_ids, a_mask, p_ids, p_mask, n_ids, n_mask in tqdm(val_loader, desc=f"Val {epoch}", unit="batch"): a_ids, a_mask = a_ids.to(device), a_mask.to(device) p_ids, p_mask = p_ids.to(device), p_mask.to(device) n_ids, n_mask = n_ids.to(device), n_mask.to(device) with autocast(): emb_a = model(a_ids, a_mask) emb_p = model(p_ids, p_mask) emb_n = model(n_ids, n_mask) val_loss += triplet_loss(emb_a, emb_p, emb_n).item() print(f"Epoch {epoch} Val Loss: {val_loss/len(val_loader):.6f}") # Checkpoint LoRA only ckpt_dir = os.path.join(OUTPUT_DIR, f"epoch{epoch}") peft_model.save_pretrained(ckpt_dir) tokenizer.save_pretrained(ckpt_dir) # Final Save final_dir = os.path.join(OUTPUT_DIR, "final") os.makedirs(final_dir, exist_ok=True) peft_model.save_pretrained(final_dir) tokenizer.save_pretrained(final_dir) print("Phase 2 complete. Checkpoints in", OUTPUT_DIR) if __name__ == "__main__": freeze_support() main()