import json import shutil import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from transformers import ( DebertaV2Model, DebertaV2TokenizerFast, DebertaV2Config, get_linear_schedule_with_warmup, set_seed ) from torch.cuda.amp import autocast from tqdm import tqdm import numpy as np from pathlib import Path import logging from dataclasses import dataclass from typing import Optional, Dict, List, Tuple import wandb from sklearn.metrics import accuracy_score, f1_score, precision_recall_fscore_support import functools # Import functools for partial import re # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) logger = logging.getLogger(__name__) @dataclass class TrainingConfig: """Training configuration for link token classification""" # Model model_name: str = "microsoft/deberta-v3-large" num_labels: int = 2 # 0: not link, 1: link token # Data train_file: str = "train_windows.jsonl" val_file: str = "val_windows.jsonl" max_length: int = 512 # This is the crucial fixed length for padding # Training batch_size: int = 8 gradient_accumulation_steps: int = 8 num_epochs: int = 3 learning_rate: float = 1e-6 warmup_ratio: float = 0.1 weight_decay: float = 0.01 max_grad_norm: float = 1.0 label_smoothing: float = 0.0 # Not currently used in CrossEntropyLoss # System device: str = "cuda" if torch.cuda.is_available() else "cpu" num_workers: int = 0 # Set to 0 for Windows to avoid multiprocessing issues seed: int = 42 bf16: bool = True # Using BF16 for RTX 4090 # Logging logging_steps: int = 1 # Log every step to wandb eval_steps: int = 5000 save_steps: int = 10000 output_dir: str = "./deberta_link_output" # WandB wandb_project: str = "deberta-link-classification" wandb_name: str = "deberta-v3-large-link-tokens" # Early stopping patience: int = 2 min_delta: float = 0.0001 # Checkpoint retention (Scope A: count all subdirs except 'final_model') max_checkpoints: int = 5 protect_latest_epoch_step: bool = True # Always keep latest best_model_epoch_* and best_model_step_* class LinkTokenDataset(Dataset): """Dataset for link token classification""" def __init__(self, file_path: str, max_samples: Optional[int] = None): self.data = [] logger.info(f"Loading data from {file_path}") seq_lengths = [] with open(file_path, 'r') as f: for i, line in enumerate(f): if max_samples and i >= max_samples: break sample = json.loads(line) seq_len = len(sample['input_ids']) seq_lengths.append(seq_len) # Convert to tensors sample['input_ids'] = torch.tensor(sample['input_ids'], dtype=torch.long) sample['attention_mask'] = torch.tensor(sample['attention_mask'], dtype=torch.long) sample['labels'] = torch.tensor(sample['labels'], dtype=torch.long) self.data.append(sample) logger.info(f"Loaded {len(self.data)} samples") logger.info(f"Sequence lengths - Min: {min(seq_lengths)}, Max: {max(seq_lengths)}, Avg: {np.mean(seq_lengths):.1f}") # Calculate class weights for imbalanced data (for logging info) total_labels = [] for s in self.data: # Only count non-padded positions (where labels are not -100) valid_labels = s['labels'][s['labels'] != -100] total_labels.append(valid_labels) # Ensure total_labels is not empty before concatenating if total_labels: total_labels = torch.cat(total_labels) num_link_tokens = (total_labels == 1).sum().item() num_non_link = (total_labels == 0).sum().item() logger.info(f"Label distribution - Non-link: {num_non_link}, Link: {num_link_tokens}") if (num_link_tokens + num_non_link) > 0: logger.info(f"Link token ratio: {num_link_tokens / (num_link_tokens + num_non_link):.4%}") else: logger.info("No valid labels found in the dataset.") def __len__(self): return len(self.data) def __getitem__(self, idx): return self.data[idx] def collate_fn(batch: List[Dict], max_seq_length: int) -> Dict[str, torch.Tensor]: """ Custom collate function for batching with padding to a fixed max_seq_length. Args: batch (List[Dict]): A list of samples from the dataset. max_seq_length (int): The maximum sequence length to pad all samples to. Returns: Dict[str, torch.Tensor]: A dictionary containing stacked and padded tensors. """ input_ids = [] attention_mask = [] labels = [] for x in batch: seq_len = len(x['input_ids']) # Truncate if sequence is longer than max_seq_length (shouldn't happen with preprocessed data) if seq_len > max_seq_length: x['input_ids'] = x['input_ids'][:max_seq_length] x['attention_mask'] = x['attention_mask'][:max_seq_length] x['labels'] = x['labels'][:max_seq_length] seq_len = max_seq_length # Pad sequences to the global max_seq_length padding_len = max_seq_length - seq_len # Pad input_ids with 0 (typically the pad token id) padded_input = torch.cat([ x['input_ids'], torch.zeros(padding_len, dtype=torch.long) ]) # Pad attention_mask with 0 (ignore padded tokens) padded_mask = torch.cat([ x['attention_mask'], torch.zeros(padding_len, dtype=torch.long) ]) # Pad labels with -100 (ignored in loss calculation) padded_labels = torch.cat([ x['labels'], torch.full((padding_len,), -100, dtype=torch.long) ]) input_ids.append(padded_input) attention_mask.append(padded_mask) labels.append(padded_labels) return { 'input_ids': torch.stack(input_ids), 'attention_mask': torch.stack(attention_mask), 'labels': torch.stack(labels) } class DeBERTaForTokenClassification(nn.Module): """DeBERTa model for token classification""" def __init__(self, model_name: str, num_labels: int, dropout_rate: float = 0.1): super().__init__() self.config = DebertaV2Config.from_pretrained(model_name) self.deberta = DebertaV2Model.from_pretrained(model_name) self.dropout = nn.Dropout(dropout_rate) self.classifier = nn.Linear(self.config.hidden_size, num_labels) # Initialize classifier weights nn.init.xavier_uniform_(self.classifier.weight) nn.init.zeros_(self.classifier.bias) def forward( self, input_ids: torch.Tensor, attention_mask: torch.Tensor, labels: Optional[torch.Tensor] = None ) -> Dict[str, torch.Tensor]: outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask ) sequence_output = outputs.last_hidden_state sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: # Calculate class weights for imbalanced dataset # Link tokens are ~3.88% of data, so weight them ~25x more # Ensure weight tensor is on the correct device weight = torch.tensor([1.0, 25.0]).to(logits.device) loss_fct = nn.CrossEntropyLoss(weight=weight, ignore_index=-100) # Reshape logits to (batch_size * sequence_length, num_labels) # Reshape labels to (batch_size * sequence_length) loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) return { 'loss': loss, 'logits': logits } def compute_metrics(predictions: np.ndarray, labels: np.ndarray, mask: np.ndarray) -> Dict[str, float]: """Compute metrics for token classification""" # Flatten and remove padding # Only consider positions where attention_mask is 1 AND labels are not -100 # The -100 in labels already implies an ignored position, so we can primarily filter by that. # Flatten all predictions, labels, and masks predictions_flat = predictions.flatten() labels_flat = labels.flatten() mask_flat = mask.flatten() # Create a combined filter for valid tokens (not padding, not -100 label) valid_indices = (labels_flat != -100) & (mask_flat == 1) preds_filtered = predictions_flat[valid_indices] labels_filtered = labels_flat[valid_indices] # Handle cases where no valid tokens are present if len(labels_filtered) == 0: return { 'accuracy': 0.0, 'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'f1_non_link': 0.0, 'f1_link': 0.0, 'precision_link': 0.0, 'recall_link': 0.0, 'num_valid_tokens': 0 } # Calculate metrics accuracy = accuracy_score(labels_filtered, preds_filtered) precision, recall, f1, support = precision_recall_fscore_support( labels_filtered, preds_filtered, average='binary', pos_label=1, zero_division=0 ) # Per-class metrics unique_labels_in_data = np.unique(labels_filtered) precision_per_class = [0.0, 0.0] recall_per_class = [0.0, 0.0] f1_per_class = [0.0, 0.0] # Class 0 (non-link) if 0 in unique_labels_in_data: p0, r0, f0, _ = precision_recall_fscore_support( labels_filtered, preds_filtered, labels=[0], average='binary', pos_label=0, zero_division=0 ) precision_per_class[0] = p0 recall_per_class[0] = r0 f1_per_class[0] = f0 # Class 1 (link) if 1 in unique_labels_in_data: p1, r1, f1_1, _ = precision_recall_fscore_support( labels_filtered, preds_filtered, labels=[1], average='binary', pos_label=1, zero_division=0 ) precision_per_class[1] = p1 recall_per_class[1] = r1 f1_per_class[1] = f1_1 return { 'accuracy': accuracy, 'precision': precision, 'recall': recall, 'f1': f1, 'f1_non_link': f1_per_class[0], 'f1_link': f1_per_class[1], 'precision_link': precision_per_class[1], 'recall_link': recall_per_class[1], 'num_valid_tokens': len(labels_filtered) } class Trainer: """Trainer class for DeBERTa token classification""" def __init__(self, config: TrainingConfig): self.config = config set_seed(config.seed) # Initialize wandb wandb.init( project=config.wandb_project, name=config.wandb_name, config=vars(config) ) # Create output directory Path(config.output_dir).mkdir(parents=True, exist_ok=True) # Load datasets self.train_dataset = LinkTokenDataset(config.train_file) self.val_dataset = LinkTokenDataset(config.val_file) # Create dataloaders # Use functools.partial to pass the fixed max_length to collate_fn self.train_loader = DataLoader( self.train_dataset, batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers, collate_fn=functools.partial(collate_fn, max_seq_length=config.max_length), pin_memory=True ) self.val_loader = DataLoader( self.val_dataset, batch_size=config.batch_size * 2, # Often larger batch size for validation shuffle=False, num_workers=config.num_workers, collate_fn=functools.partial(collate_fn, max_seq_length=config.max_length), pin_memory=True ) # Initialize model self.model = DeBERTaForTokenClassification( config.model_name, config.num_labels ).to(config.device) # Count parameters total_params = sum(p.numel() for p in self.model.parameters()) trainable_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad) logger.info(f"Total parameters: {total_params:,}") logger.info(f"Trainable parameters: {trainable_params:,}") # Initialize optimizer no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': config.weight_decay }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 } ] self.optimizer = torch.optim.AdamW( optimizer_grouped_parameters, lr=config.learning_rate, eps=1e-6 ) # Initialize scheduler total_steps = len(self.train_loader) * config.num_epochs // config.gradient_accumulation_steps warmup_steps = int(total_steps * config.warmup_ratio) self.scheduler = get_linear_schedule_with_warmup( self.optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps ) # Tracking variables self.global_step = 0 self.best_val_loss = float('inf') self.patience_counter = 0 def train_epoch(self, epoch: int) -> float: """Train for one epoch""" self.model.train() total_loss = 0 progress_bar = tqdm(self.train_loader, desc=f"Epoch {epoch}") # Flag to indicate if early stopping was triggered mid-epoch early_stop_triggered = False for step, batch in enumerate(progress_bar): # Move batch to device batch = {k: v.to(self.config.device) for k, v in batch.items()} # Forward pass with BF16 mixed precision if self.config.bf16: with torch.amp.autocast(device_type='cuda', dtype=torch.bfloat16): outputs = self.model(**batch) loss = outputs['loss'] / self.config.gradient_accumulation_steps else: outputs = self.model(**batch) loss = outputs['loss'] / self.config.gradient_accumulation_steps # Check if loss is NaN or inf, and skip if it is if torch.isnan(loss) or torch.isinf(loss): logger.warning(f"NaN or Inf loss encountered at step {self.global_step}. Skipping backward pass.") self.optimizer.zero_grad() # Clear gradients for current batch continue # Skip this step loss.backward() total_loss += loss.item() # Gradient accumulation if (step + 1) % self.config.gradient_accumulation_steps == 0: torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config.max_grad_norm) self.optimizer.step() self.scheduler.step() self.optimizer.zero_grad() self.global_step += 1 # Logging - every step to wandb if self.global_step % self.config.logging_steps == 0: current_loss = loss.item() * self.config.gradient_accumulation_steps wandb.log({ 'train/loss': current_loss, 'train/learning_rate': self.scheduler.get_last_lr()[0], 'train/global_step': self.global_step, 'train/epoch': epoch }) progress_bar.set_postfix({'loss': f'{current_loss:.4f}'}) # Evaluation if self.global_step % self.config.eval_steps == 0: eval_metrics = self.evaluate() logger.info(f"Step {self.global_step} - Eval metrics: {eval_metrics}") # Early stopping check based on validation loss current_val_loss = eval_metrics['loss'] if current_val_loss < self.best_val_loss - self.config.min_delta: self.best_val_loss = current_val_loss self.patience_counter = 0 self.save_model(f"best_model_step_{self.global_step}") logger.info(f"New best validation loss: {self.best_val_loss:.4f}") else: self.patience_counter += 1 logger.info(f"No improvement in validation loss. Patience: {self.patience_counter}/{self.config.patience}") if self.patience_counter >= self.config.patience: logger.info("Early stopping triggered mid-epoch!") early_stop_triggered = True break # Break from the inner loop (current epoch) if early_stop_triggered: break # Break from the outer loop (current epoch) return total_loss / len(self.train_loader) if len(self.train_loader) > 0 else 0.0 # Return 0 if loader is empty def evaluate(self) -> Dict[str, float]: """Evaluate on validation set""" self.model.eval() all_predictions = [] all_labels = [] all_masks = [] total_loss = 0 num_batches = 0 with torch.no_grad(): for batch in tqdm(self.val_loader, desc="Evaluating"): batch = {k: v.to(self.config.device) for k, v in batch.items()} # Use BF16 for evaluation too if self.config.bf16: with torch.amp.autocast(device_type='cuda', dtype=torch.bfloat16): outputs = self.model(**batch) else: outputs = self.model(**batch) if outputs['loss'] is not None: total_loss += outputs['loss'].item() num_batches += 1 predictions = torch.argmax(outputs['logits'], dim=-1) all_predictions.append(predictions.cpu().numpy()) all_labels.append(batch['labels'].cpu().numpy()) all_masks.append(batch['attention_mask'].cpu().numpy()) all_predictions = np.concatenate(all_predictions, axis=0) all_labels = np.concatenate(all_labels, axis=0) all_masks = np.concatenate(all_masks, axis=0) # Compute metrics metrics = compute_metrics(all_predictions, all_labels, all_masks) metrics['loss'] = total_loss / num_batches if num_batches > 0 else 0.0 # Log to wandb wandb.log({f'eval/{k}': v for k, v in metrics.items()}, step=self.global_step) self.model.train() # Set model back to train mode after evaluation return metrics def _enforce_checkpoint_limit(self): """ Enforce checkpoint retention: - Count all subdirectories in output_dir except 'final_model' - Keep at most config.max_checkpoints - Delete oldest by modification time - Always protect: * 'final_model' * latest 'best_model_epoch_*' * latest 'best_model_step_*' """ output_dir = Path(self.config.output_dir) if not output_dir.exists(): return # List all subdirectories subdirs = [p for p in output_dir.iterdir() if p.is_dir()] if not subdirs: return # Identify protected directories protected = set() # Always protect 'final_model' if present final_dir = output_dir / "final_model" if final_dir.exists() and final_dir.is_dir(): protected.add(final_dir.resolve()) if self.config.protect_latest_epoch_step: # Latest best_model_epoch_* epoch_dirs = [d for d in subdirs if re.match(r"best_model_epoch_\d+$", d.name)] if epoch_dirs: latest_epoch = max(epoch_dirs, key=lambda d: d.stat().st_mtime) protected.add(latest_epoch.resolve()) # Latest best_model_step_* step_dirs = [d for d in subdirs if re.match(r"best_model_step_\d+$", d.name)] if step_dirs: latest_step = max(step_dirs, key=lambda d: d.stat().st_mtime) protected.add(latest_step.resolve()) # Candidates counted toward limit: all except 'final_model' counted = [d for d in subdirs if d.resolve() != final_dir.resolve()] # Nothing to do if within limit if len(counted) <= self.config.max_checkpoints: return # Sort by mtime (oldest first) counted_sorted = sorted(counted, key=lambda d: d.stat().st_mtime) # Iteratively delete oldest non-protected until within limit to_delete = [] current = len(counted) for d in counted_sorted: if current <= self.config.max_checkpoints: break if d.resolve() in protected: continue to_delete.append(d) current -= 1 # If still above limit because everything old was protected, # continue deleting oldest even if protected EXCEPT final_model, # but try to avoid removing the most recent protected items by re-check. if current > self.config.max_checkpoints: # Recompute deletable set excluding final_model only extras = [d for d in counted_sorted if d.resolve() != final_dir.resolve() and d not in to_delete] for d in extras: if current <= self.config.max_checkpoints: break # Do not delete the most recent protected epoch/step if possible if d.resolve() in protected: continue to_delete.append(d) current -= 1 # Execute deletions for d in to_delete: try: shutil.rmtree(d) logger.info(f"Deleted old checkpoint: {d}") except Exception as e: logger.warning(f"Failed to delete {d}: {e}") def save_model(self, name: str): """Save model checkpoint""" save_path = Path(self.config.output_dir) / name save_path.mkdir(parents=True, exist_ok=True) # Only save model state dict to keep file size manageable torch.save(self.model.state_dict(), save_path / 'pytorch_model.bin') # Save config separately with open(save_path / 'training_config.json', 'w') as f: json.dump(vars(self.config), f, indent=4) logger.info(f"Model saved to {save_path}") # Enforce retention after each save self._enforce_checkpoint_limit() def train(self): """Main training loop""" logger.info("Starting training...") logger.info(f"Training samples: {len(self.train_dataset)}") logger.info(f"Validation samples: {len(self.val_dataset)}") # Calculate total optimization steps accurately total_optimization_steps = (len(self.train_loader) + self.config.gradient_accumulation_steps - 1) // self.config.gradient_accumulation_steps * self.config.num_epochs logger.info(f"Total optimization steps: {total_optimization_steps}") logger.info(f"Early stopping: monitoring validation loss with patience={self.config.patience}") for epoch in range(self.config.num_epochs): logger.info(f"\n{'='*50}") logger.info(f"Epoch {epoch + 1}/{self.config.num_epochs}") # Train avg_train_loss = self.train_epoch(epoch + 1) logger.info(f"Average training loss: {avg_train_loss:.4f}") # Check if early stopping was already triggered mid-epoch from train_epoch if self.patience_counter >= self.config.patience: logger.info("Training stopped due to early stopping during epoch.") break # Evaluate at end of epoch if not already stopped eval_metrics = self.evaluate() logger.info(f"Epoch {epoch + 1} - Eval metrics:") for key, value in eval_metrics.items(): logger.info(f" {key}: {value:.4f}") # Check for early stopping at epoch level current_val_loss = eval_metrics['loss'] if current_val_loss < self.best_val_loss - self.config.min_delta: self.best_val_loss = current_val_loss self.patience_counter = 0 self.save_model(f"best_model_epoch_{epoch + 1}") logger.info(f"New best validation loss at epoch end: {self.best_val_loss:.4f}") else: self.patience_counter += 1 logger.info(f"No improvement in validation loss. Patience: {self.patience_counter}/{self.config.patience}") # Check for early stopping if self.patience_counter >= self.config.patience: logger.info("Training stopped due to early stopping") break # Save final model self.save_model("final_model") logger.info("Training completed!") logger.info(f"Best validation loss: {self.best_val_loss:.4f}") wandb.finish() def main(): """Main function""" config = TrainingConfig() # Optimized for RTX 4090 with BF16 # You can override config here based on your VRAM usage: # config.batch_size = 32 # RTX 4090 can handle larger batches with 24GB VRAM # config.gradient_accumulation_steps = 1 # May not need accumulation # config.learning_rate = 1e-5 # Sometimes better for fine-tuning trainer = Trainer(config) trainer.train() if __name__ == "__main__": main()