--- library_name: transformers base_model: llama_small_config.json tags: - generated_from_trainer model-index: - name: llama-3.2-350M-fourier_arithmetic_dataset results: [] --- # llama-3.2-350M-fourier_arithmetic_dataset This model is a fine-tuned version of [llama_small_config.json](https://huggingface.co/llama_small_config.json) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - total_eval_batch_size: 2 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8493 | 0.1066 | 1000 | 1.8628 | | 1.8654 | 0.2132 | 2000 | 1.8692 | | 1.8328 | 0.3197 | 3000 | 1.8328 | | 1.7287 | 0.4263 | 4000 | 1.7136 | | 1.6856 | 0.5329 | 5000 | 1.6816 | | 1.65 | 0.6395 | 6000 | 1.6494 | | 1.6304 | 0.7460 | 7000 | 1.6308 | | 1.6071 | 0.8526 | 8000 | 1.6119 | | 1.6022 | 0.9592 | 9000 | 1.6047 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.3.1+cu118 - Datasets 3.2.0 - Tokenizers 0.21.0