--- license: mit tags: - diffusion - flow-matching - mlp - gaussian-mixture --- # Flow Matching MLP Model Flow Matching model with MLP vector field ## Model Details - **Model Type**: flow_matching_mlp - **Training Epochs**: 20000 - **Batch Size**: 2000 - **Learning Rate**: 0.001 ## Architecture - **Hidden Layers**: [100, 100, 100, 100] - **Data Dimensionality**: 2 - **Standard Deviation**: 1.0 - **Scale**: 10.0 ## Usage ```python from huggingface_hub import hf_hub_download import torch from model_config import FlowMatchingConfig # Download model and config model_path = hf_hub_download("derekwong/flow-matching-mlp", "pytorch_model.bin") config_path = hf_hub_download("derekwong/flow-matching-mlp", "config.json") # Load config import json with open(config_path) as f: config_dict = json.load(f) config = FlowMatchingConfig.from_dict(config_dict) # Load model (you'll need the MLPVectorField class) model = MLPVectorField(dim=config.dim, hiddens=config.hiddens) model.load_state_dict(torch.load(model_path)) model.eval() ``` ## Training This model was trained using Flow Matching on 2D Gaussian mixture data.