--- base_model: meta-llama/Llama-3.2-1B-Instruct tags: - text-generation-inference - transformers - llama - trl license: apache-2.0 language: - en datasets: - deshanksuman/WSD_DATASET_FEWS_SEMCOR --- # Uploaded model - **Developed by:** deshanksuman - **License:** apache-2.0 - **Finetuned from model :** meta-llama/Llama-3.2-1B-Instruct # Dataset Fews Training data arranged in the format of Instruction, Input and output https://huggingface.co/datasets/deshanksuman/WSD_DATASET_FEWS_SEMCOR # Code ```python import re import torch from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel from pydantic import BaseModel import json # Load local model + LoRA adapter as before local_directory = "meta-llama/Llama-3.2-1B-Instruct" adapter_repo = "deshanksuman/finetuned-WSD-llama3-8b-Instruct_fews_semcor" access_token = "hfxtoken" tokenizer = AutoTokenizer.from_pretrained(local_directory, use_auth_token=access_token) base_model = AutoModelForCausalLM.from_pretrained( local_directory, use_auth_token=access_token, device_map="auto", torch_dtype="auto", load_in_4bit=False ) model = PeftModel.from_pretrained(base_model, adapter_repo, use_auth_token=access_token) model.to("cuda" if torch.cuda.is_available() else "cpu") # Function to generate structured JSON response def generate_structured_response(question, context="You are a helpful assistant. Respond only with valid JSON.", device="cuda"): prompt = ( f"{context}\n\n" f"Question: {question}\n\n" f"Respond with valid JSON only in the format: {{\"meaning\":}}" ) inputs = tokenizer(prompt, return_tensors="pt").to(device) output_ids = model.generate( inputs.input_ids, max_new_tokens=256, temperature=0.3, top_p=0.9, do_sample=True, num_beams=3, no_repeat_ngram_size=3, early_stopping=True ) response_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) return response_text ``` This is developed by Deshan Sumanathilaka https://sumanathilaka.github.io # Acknowledgement We acknowledge the support of the Supercomputing Wales project, which is part-funded by the European Regional Development Fund (ERDF) via Welsh Government.