devetle commited on
Commit
21e7473
1 Parent(s): f6e14ad

Upload first PPO LunarLander-v2 trained agent, reward = 260+/-19

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 248.23 +/- 24.73
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 291.63 +/- 15.40
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f932ab17950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f932ab179e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f932ab17a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f932ab17b00>", "_build": "<function ActorCriticPolicy._build at 0x7f932ab17b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f932ab17c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f932ab17cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f932ab17d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f932ab17dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f932ab17e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f932ab17ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f932aaec630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651998700.41488, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVXwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlEsBfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz8zqSowVTJhYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC2Fubm90YXRpb25zlH2UjAhxdWFsbmFtZZSMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjAprd2RlZmF1bHRzlE51dFIu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAA5qVBPa38Bj/QWX083WbSvosTJD3iuK88AAAAAAAAAABm/iO7cS1Guaa6FrSM/Z2vwVTmO8uZqjMAAIA/AACAP7rERz7s1jE/rj5LPfu2176YSyY+xH6ovQAAAAAAAAAAmpkxN2GqjbyYHBC+7cHHOkQ/AD4qYZ+7AACAPwAAgD/znyw+i8vsPbb3Vb6z7mm+ATtiPe7Scj0AAAAAAAAAADOvsbzhVpG6LrIiu9mBmjmpIqK7AjCDOQAAgD8AAIA/ZuZGPNdfQ7sYITG8y7bhPLMfczz6W769AACAPwAAgD8zV70+Pn/6Ppq7xr0m6ai+/ANMPqdtxL0AAAAAAAAAAG5For5WlZI/HiTIvhsior4BSrW+ZmqSvQAAAAAAAAAAGvUFPXskiLo7quu9VwL3PD/jgbv+g9O9AACAPwAAgD8zHN+87CntuQNiVDwLXVA9SPrgO9drLz4AAIA/AACAP2ZOeTtfHa4/CgNbPfm7zb4KPp67E0H0uwAAAAAAAAAARgNYPkdTRT/WCr88UBS1vgSVnD0rW9S8AAAAAAAAAACabYk7dXLCP/+GpTxiMhq9zGibu7XYk7sAAAAAAAAAADMupD1ct3W64pvLPJGdCj1xE6m7hhrrPQAAgD8AAIA/ANp9PAqRT7tSM5W+AOsIvpQlCDwLDzc/AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVXhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwCZr1APuckCUhpRSlIwBbJRNCQGMAXSUR0Crb/8cMmWudX2UKGgGaAloD0MITpfFxGYDc0CUhpRSlGgVTR8BaBZHQKtwhJI1+Ap1fZQoaAZoCWgPQwhhqpm1VIxxQJSGlFKUaBVNAwFoFkdAq3F9UuL743V9lChoBmgJaA9DCLqfU5CfYnJAlIaUUpRoFUv8aBZHQKtyKn3L3bp1fZQoaAZoCWgPQwinlq31hT9zQJSGlFKUaBVL/WgWR0CrckYGUwBYdX2UKGgGaAloD0MINKFJYgmgcECUhpRSlGgVTRUBaBZHQKtyimhM8HR1fZQoaAZoCWgPQwjV7ewrD4ByQJSGlFKUaBVNMgFoFkdAq3KcEkjX4HV9lChoBmgJaA9DCHUGRl4WXXNAlIaUUpRoFU0+AWgWR0CrcubvgFX8dX2UKGgGaAloD0MILv8h/TbfcUCUhpRSlGgVTTgBaBZHQKty/gKnei11fZQoaAZoCWgPQwjd7Xppig5NQJSGlFKUaBVL7WgWR0Crcz9+XqqwdX2UKGgGaAloD0MIZED2evfRb0CUhpRSlGgVS+5oFkdAq3N7mjj7ynV9lChoBmgJaA9DCMB4Bg39UG5AlIaUUpRoFU1XAWgWR0Crc7f47A+IdX2UKGgGaAloD0MIIehoVcsmcECUhpRSlGgVTS8BaBZHQKtzyv8qFyt1fZQoaAZoCWgPQwjbwvNSMVluQJSGlFKUaBVNdAFoFkdAq3QufZmI03V9lChoBmgJaA9DCEYHJGFftHFAlIaUUpRoFU0NAWgWR0CrdHKtPpIMdX2UKGgGaAloD0MIwLFnz2WBckCUhpRSlGgVS/BoFkdAq3SdSEUTMHV9lChoBmgJaA9DCGXggJaujnBAlIaUUpRoFUv5aBZHQKt1OIhQm/p1fZQoaAZoCWgPQwg6HjNQmcJwQJSGlFKUaBVNVQFoFkdAq3YO+h4+r3V9lChoBmgJaA9DCDDa44W0WHBAlIaUUpRoFUvaaBZHQKt2b1cMVlB1fZQoaAZoCWgPQwhAwcWKGmZvQJSGlFKUaBVNHAFoFkdAq3bN0mtyP3V9lChoBmgJaA9DCBzSqMDJbXJAlIaUUpRoFU0EAWgWR0Crdu6nivPkdX2UKGgGaAloD0MIKbAApsy4cUCUhpRSlGgVTQIBaBZHQKt3SIuXeFd1fZQoaAZoCWgPQwjSqwFKQ+tyQJSGlFKUaBVNFQFoFkdAq3dZ5qubJHV9lChoBmgJaA9DCBMPKJsy5nJAlIaUUpRoFUv4aBZHQKt3e1F6Rhd1fZQoaAZoCWgPQwjgLZCgeJJwQJSGlFKUaBVNAgFoFkdAq3fuSntOVXV9lChoBmgJaA9DCHhF8L8VFXBAlIaUUpRoFUv9aBZHQKt4FNs3yZt1fZQoaAZoCWgPQwh8YTJVcNByQJSGlFKUaBVNKgFoFkdAq3hQtUXHinV9lChoBmgJaA9DCL/09ueinm9AlIaUUpRoFU0HAWgWR0CreH+pn6EbdX2UKGgGaAloD0MIZ5lFKPaGcUCUhpRSlGgVS/xoFkdAq3jMoF3Y+XV9lChoBmgJaA9DCOykviwtYXBAlIaUUpRoFU0gAWgWR0CreQekxh2GdX2UKGgGaAloD0MIyM7b2CxIcECUhpRSlGgVTSMBaBZHQKt5yO938oB1fZQoaAZoCWgPQwjqeTcWFGFwQJSGlFKUaBVNHgFoFkdAq3nePcSGrXV9lChoBmgJaA9DCAqgGFmypnBAlIaUUpRoFU0XAWgWR0Crel9eIEbHdX2UKGgGaAloD0MItoMR+wQ8c0CUhpRSlGgVS95oFkdAq3r6Z2IO6XV9lChoBmgJaA9DCLpnXaOlX3FAlIaUUpRoFUv0aBZHQKt7RaIN3GJ1fZQoaAZoCWgPQwihEtcxLtBxQJSGlFKUaBVNIQFoFkdAq3vNRgqmTHV9lChoBmgJaA9DCMzs8xjlFHJAlIaUUpRoFUv0aBZHQKt719kSVW11fZQoaAZoCWgPQwhLH7qgfnlyQJSGlFKUaBVNXAFoFkdAq3yhBqsU7HV9lChoBmgJaA9DCFosRfKVb3FAlIaUUpRoFU0iAWgWR0CrfP+jmCAddX2UKGgGaAloD0MI4Qm9/iTBbUCUhpRSlGgVTR0BaBZHQKt9awLVnVZ1fZQoaAZoCWgPQwguAmN9w0pxQJSGlFKUaBVNFgFoFkdAq31xGjKxLXV9lChoBmgJaA9DCKVKlL0l9nBAlIaUUpRoFU1KAWgWR0CrfaCD28IzdX2UKGgGaAloD0MI9Zz0vnFCbkCUhpRSlGgVS/1oFkdAq4rpYzSCv3V9lChoBmgJaA9DCA6jIHg8/HBAlIaUUpRoFUvyaBZHQKuK9Lzwtrd1fZQoaAZoCWgPQwi3YKkuoFtyQJSGlFKUaBVNMAFoFkdAq4uVgMMI/3V9lChoBmgJaA9DCKSNI9ai6XJAlIaUUpRoFU0FAWgWR0CrjB9ORDCxdX2UKGgGaAloD0MIWriswqYpcECUhpRSlGgVS/1oFkdAq4ykpXp4bHV9lChoBmgJaA9DCIxkj1DzKnFAlIaUUpRoFU10AWgWR0CrjLegL7XQdX2UKGgGaAloD0MIz2VqErwdcUCUhpRSlGgVS/loFkdAq406I55qunV9lChoBmgJaA9DCICAtWqXPnBAlIaUUpRoFU1LAWgWR0CrjaBW5paidX2UKGgGaAloD0MIO+C6YgaPcECUhpRSlGgVTRwBaBZHQKuOQW8h9st1fZQoaAZoCWgPQwi2TfG46GtwQJSGlFKUaBVNEQFoFkdAq46apcX3xnV9lChoBmgJaA9DCP2C3bCtnHBAlIaUUpRoFUvdaBZHQKuPG01IiC91fZQoaAZoCWgPQwgFTyFX6iVuQJSGlFKUaBVNMwFoFkdAq49jOzIFNnV9lChoBmgJaA9DCG/whckUQHFAlIaUUpRoFUv/aBZHQKuPaUB4lhR1fZQoaAZoCWgPQwgdAkcCzUdxQJSGlFKUaBVNEAFoFkdAq5Aho4+8oXV9lChoBmgJaA9DCD83NGWnnnFAlIaUUpRoFU03AWgWR0CrkDakRBeHdX2UKGgGaAloD0MISL99Hbj1cECUhpRSlGgVTQsBaBZHQKuQVIwudwx1fZQoaAZoCWgPQwgqcR3jymNxQJSGlFKUaBVNCwFoFkdAq5BgNb1RL3V9lChoBmgJaA9DCCf3OxTFOXFAlIaUUpRoFUv0aBZHQKuQi0gKWs11fZQoaAZoCWgPQwgIkQw5tlRRQJSGlFKUaBVL52gWR0CrkM4W+GoKdX2UKGgGaAloD0MIy03U0tzscUCUhpRSlGgVS/NoFkdAq5GZGFzuGHV9lChoBmgJaA9DCDepaKx9sW5AlIaUUpRoFU0JAWgWR0CrkflPSDywdX2UKGgGaAloD0MIjSrDuBv2cUCUhpRSlGgVS/NoFkdAq5KCjFhod3V9lChoBmgJaA9DCJkSSfQymHJAlIaUUpRoFUv1aBZHQKuTJqh11W91fZQoaAZoCWgPQwhUjPM3oaNtQJSGlFKUaBVNOgFoFkdAq5OSTjebeHV9lChoBmgJaA9DCMMrSZ5rnXJAlIaUUpRoFU0AAWgWR0CrlDsVLzwudX2UKGgGaAloD0MI16TbEnnOckCUhpRSlGgVTdYBaBZHQKuUSCGvfTF1fZQoaAZoCWgPQwhpq5LIfpVyQJSGlFKUaBVL/2gWR0CrlHuLBKtgdX2UKGgGaAloD0MIN1X3yGbRbECUhpRSlGgVTS0BaBZHQKuUrokiUxF1fZQoaAZoCWgPQwh6NxYURmpwQJSGlFKUaBVL7mgWR0CrlPGMGX5WdX2UKGgGaAloD0MIK/htiHGLcECUhpRSlGgVS+loFkdAq5UB26kIonV9lChoBmgJaA9DCEuuYvFb0HBAlIaUUpRoFUviaBZHQKuVDo8p1A91fZQoaAZoCWgPQwhfJR+7i7ZwQJSGlFKUaBVNJQFoFkdAq5U43Jgb63V9lChoBmgJaA9DCOZd9YA5TnJAlIaUUpRoFU0ZAWgWR0CrlZs41gpjdX2UKGgGaAloD0MIlWbzOEx3ckCUhpRSlGgVS/5oFkdAq5XHS4OMEXV9lChoBmgJaA9DCKnZA62ANnNAlIaUUpRoFUvjaBZHQKuWCKWszVN1fZQoaAZoCWgPQwi+Mm/VNbxwQJSGlFKUaBVNCwFoFkdAq5doYm9g4XV9lChoBmgJaA9DCCe9b3ztK29AlIaUUpRoFU0GAWgWR0Crl9Sv1UVBdX2UKGgGaAloD0MIyqfHtgyeb0CUhpRSlGgVTY0BaBZHQKuYOvQnhKl1fZQoaAZoCWgPQwi6Mqg2+OFxQJSGlFKUaBVL/2gWR0CrmFE1l5GCdX2UKGgGaAloD0MI8l8gCJA3cECUhpRSlGgVS/FoFkdAq5kO5J9RaXV9lChoBmgJaA9DCKKXUSy3CXJAlIaUUpRoFUv4aBZHQKuZJrtVrAR1fZQoaAZoCWgPQwhGX0GacXJwQJSGlFKUaBVNNwFoFkdAq5nRaJQ+EHV9lChoBmgJaA9DCDlFR3J5onBAlIaUUpRoFU0mAWgWR0CrmprwvxpddX2UKGgGaAloD0MIFk1nJ8M/cUCUhpRSlGgVTQ4BaBZHQKuat1Tzd1x1fZQoaAZoCWgPQwhYU1kU9olyQJSGlFKUaBVNKQFoFkdAq5r3oPkJbHV9lChoBmgJaA9DCGeZRSg2nW5AlIaUUpRoFU0mAWgWR0Crmwf7zkIYdX2UKGgGaAloD0MIL90kBgHAcECUhpRSlGgVTQsBaBZHQKubJVinYQJ1fZQoaAZoCWgPQwgiNIKNa19wQJSGlFKUaBVNMAFoFkdAq5ssNUfgaXV9lChoBmgJaA9DCAjlfRyNpHFAlIaUUpRoFUv1aBZHQKubMrtmcvx1fZQoaAZoCWgPQwjVB5J3zjVxQJSGlFKUaBVNVAFoFkdAq5tRzRx95XV9lChoBmgJaA9DCCyazk4GvG9AlIaUUpRoFU03AWgWR0CrnA/pljEvdX2UKGgGaAloD0MIscBXdOvFcUCUhpRSlGgVTRYBaBZHQKucxPHktEp1fZQoaAZoCWgPQwjyeFp+YFxvQJSGlFKUaBVNHgFoFkdAq51P2IwdsHV9lChoBmgJaA9DCJGYoIZv3W5AlIaUUpRoFU0MAWgWR0CrnWF6Rhc8dX2UKGgGaAloD0MI+64I/rdncUCUhpRSlGgVTR0BaBZHQKudyer+5vt1fZQoaAZoCWgPQwhKsg5HV5pxQJSGlFKUaBVNAQFoFkdAq54OsNlRQHV9lChoBmgJaA9DCKmkTkCTE3JAlIaUUpRoFU0AAWgWR0CrnqFdszl+dX2UKGgGaAloD0MIvjPaquSgcUCUhpRSlGgVS+poFkdAq57mhkAggXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVXwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlEsBfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz/JmZmZmZmaYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC2Fubm90YXRpb25zlH2UjAhxdWFsbmFtZZSMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjAprd2RlZmF1bHRzlE51dFIu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f932ab17950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f932ab179e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f932ab17a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f932ab17b00>", "_build": "<function ActorCriticPolicy._build at 0x7f932ab17b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f932ab17c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f932ab17cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f932ab17d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f932ab17dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f932ab17e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f932ab17ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f932aaec630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652000470.2462664, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVXwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlEsBfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz8zqSowVTJhYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC2Fubm90YXRpb25zlH2UjAhxdWFsbmFtZZSMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjAprd2RlZmF1bHRzlE51dFIu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAswLCvZ8onbtSt8I8sB40PKlE4rxyYB09AACAPwAAgD+Nj949FY0FP1hgr7x68Au/KFvTPWoY3r0AAAAAAAAAAJrY1L17lJa4nzywu/s5Bjb1nng7Did6tQAAAAAAAAAADf0HvpUWlD+seh2/uaIJv4EdDL5z+pW+AAAAAAAAAAAA1lC9UKu2P1O82b7stYq9j2YGvX2STb4AAAAAAAAAAJ1WWb5jFPc+G71fPlSo7r7L8L68f7gwvAAAAAAAAAAAzXSOuylobLqKVTC1KzyasIre3ThmqVo0AACAPwAAgD+aTpO87N+Lu3KLED6VdoM823rvvCpEYT0AAIA/AACAP8BL3T0dNmQ/kx5EPnnCIr/bK3I+6d24PQAAAAAAAAAAEw+QPu5/uT66uIq+FmkDv7Jbij7a0xO+AAAAAAAAAAAAxhi9L+tGPgUS4LsVZbS+Z0nfPGphzDwAAAAAAAAAAKCmBz4oPq0/yI8vP7TjvL6mm509sH6JPgAAAAAAAAAAzZY/vI8PvT9xfKu9UsYVPbEJqLyambe8AAAAAAAAAACa60Q8n3OlP9q9sz1irBC/CiJIPP5lCj0AAAAAAAAAAFM6CL6fO6i7+LmOO9MQGTq7ku88EDABuwAAAAAAAAAAzVaFvAp6vD+A05m9Wykfvj0Rj7wxuQK8AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQKIJFDFkcECUhpRSlIwBbJRN1QGMAXSUR0C1XFxyn1nNdX2UKGgGaAloD0MI/z147VKCcUCUhpRSlGgVS9loFkdAtVx7LidauHV9lChoBmgJaA9DCIqT+x1Kk3BAlIaUUpRoFUveaBZHQLVctIE8q4J1fZQoaAZoCWgPQwhDOGbZUz5yQJSGlFKUaBVL32gWR0C1XL91loUSdX2UKGgGaAloD0MIeJeL+E7mbkCUhpRSlGgVS8ZoFkdAtV0WEYfnwHV9lChoBmgJaA9DCGuad5xiVXFAlIaUUpRoFUvKaBZHQLVdGsGxD9h1fZQoaAZoCWgPQwi/gF64Mz1xQJSGlFKUaBVL4GgWR0C1XSo/Z/TcdX2UKGgGaAloD0MINKDejBoAckCUhpRSlGgVS+doFkdAtV09j5Kvm3V9lChoBmgJaA9DCAtBDkpYQ3JAlIaUUpRoFUvKaBZHQLVdRNXo1UF1fZQoaAZoCWgPQwjrw3qjFsFwQJSGlFKUaBVLwmgWR0C1XXo77sOYdX2UKGgGaAloD0MILLe0GlI+cUCUhpRSlGgVS+BoFkdAtV1/ps41g3V9lChoBmgJaA9DCOfj2lCxv3NAlIaUUpRoFUvGaBZHQLVdif16E8J1fZQoaAZoCWgPQwh9emzLQBFzQJSGlFKUaBVLvGgWR0C1XY5OrQw9dX2UKGgGaAloD0MIFeRnI5cOckCUhpRSlGgVS81oFkdAtV2kyWRigHV9lChoBmgJaA9DCEVoBBvXnUhAlIaUUpRoFUuVaBZHQLVd41RceKd1fZQoaAZoCWgPQwhp/pjWJnpyQJSGlFKUaBVNBgFoFkdAtV4A/PgNw3V9lChoBmgJaA9DCL+2fvpPCW9AlIaUUpRoFUvcaBZHQLVec974SHx1fZQoaAZoCWgPQwjcnbXbLplyQJSGlFKUaBVL/WgWR0C1XnxTS9dvdX2UKGgGaAloD0MIOnR63g06cUCUhpRSlGgVS8FoFkdAtV7TzjFQ23V9lChoBmgJaA9DCM8sCVDTQnBAlIaUUpRoFUvSaBZHQLVe8r3j+711fZQoaAZoCWgPQwh1BduIJ15wQJSGlFKUaBVL52gWR0C1XvhsImgKdX2UKGgGaAloD0MIhnR4CCOYckCUhpRSlGgVS8ZoFkdAtV8h/FzdUXV9lChoBmgJaA9DCBghPNq4T3NAlIaUUpRoFU1dAWgWR0C1Xy+qebuudX2UKGgGaAloD0MIlDDT9u8ackCUhpRSlGgVS/ZoFkdAtV8vOoo/inV9lChoBmgJaA9DCLqe6LrwcXJAlIaUUpRoFUvAaBZHQLVfQPq9oOB1fZQoaAZoCWgPQwhA2ZQrvDNxQJSGlFKUaBVLzWgWR0C1X0IlY2bYdX2UKGgGaAloD0MIG2X9ZiIZcUCUhpRSlGgVTRIBaBZHQLVfWKMefZp1fZQoaAZoCWgPQwj2m4npwidzQJSGlFKUaBVL6mgWR0C1X2g/LTx5dX2UKGgGaAloD0MIFk1nJ8M4cUCUhpRSlGgVS+RoFkdAtV9sHkcS5HV9lChoBmgJaA9DCKFns+pzx3BAlIaUUpRoFUvDaBZHQLVfil+Vkc11fZQoaAZoCWgPQwhoIJbNnDJwQJSGlFKUaBVL2mgWR0C1X9N/nW8RdX2UKGgGaAloD0MIBvaYSGkpbkCUhpRSlGgVS8FoFkdAtWAT2exwAHV9lChoBmgJaA9DCEgzFk0nj3BAlIaUUpRoFUvOaBZHQLVmy+gDifh1fZQoaAZoCWgPQwj0piIVxmlyQJSGlFKUaBVL0mgWR0C1ZzQWepXIdX2UKGgGaAloD0MI86/llatWcECUhpRSlGgVS8JoFkdAtWdd+TeO43V9lChoBmgJaA9DCBQGZRrNkXBAlIaUUpRoFUvBaBZHQLVne2nKnvV1fZQoaAZoCWgPQwjWjAxy1w1zQJSGlFKUaBVLzWgWR0C1Z4Qxzq8ldX2UKGgGaAloD0MIYFlpUsp8cUCUhpRSlGgVS89oFkdAtWeICEHt4XV9lChoBmgJaA9DCI6yfjNxRXJAlIaUUpRoFUv+aBZHQLVntRoh6jZ1fZQoaAZoCWgPQwhNg6J5wERxQJSGlFKUaBVLyGgWR0C1Z7u2/i5vdX2UKGgGaAloD0MIzEBl/LvKckCUhpRSlGgVTQEBaBZHQLVnwTJyQxN1fZQoaAZoCWgPQwiVgQNaeptxQJSGlFKUaBVL1mgWR0C1Z9PvOQhfdX2UKGgGaAloD0MITKlLxnGYckCUhpRSlGgVS+9oFkdAtWffzSThYXV9lChoBmgJaA9DCCJQ/YMIlHFAlIaUUpRoFUvXaBZHQLVn+ru6VdJ1fZQoaAZoCWgPQwiH4LiMm1o6QJSGlFKUaBVLX2gWR0C1aAJUYKpldX2UKGgGaAloD0MIABsQIe4bc0CUhpRSlGgVS91oFkdAtWhS2mYShHV9lChoBmgJaA9DCJpC5zV25XFAlIaUUpRoFUvfaBZHQLVooTL4etF1fZQoaAZoCWgPQwjpD808eSxyQJSGlFKUaBVLxWgWR0C1aROvUz9CdX2UKGgGaAloD0MI+P2bF+crckCUhpRSlGgVS6toFkdAtWkzgeii7HV9lChoBmgJaA9DCAu0O6SYGm5AlIaUUpRoFUvUaBZHQLVpY9LpRoB1fZQoaAZoCWgPQwjDt7Bu/ApzQJSGlFKUaBVL2mgWR0C1aXeuaF23dX2UKGgGaAloD0MIDr3FwzufckCUhpRSlGgVS+VoFkdAtWmEuanaWXV9lChoBmgJaA9DCGxAhLgySnFAlIaUUpRoFUvLaBZHQLVpkOu7pV11fZQoaAZoCWgPQwi5wrtcRPxwQJSGlFKUaBVL1mgWR0C1acSRGMGYdX2UKGgGaAloD0MIpdk8DgMuckCUhpRSlGgVS9NoFkdAtWnL4Kx9onV9lChoBmgJaA9DCJ+QnbcxBXFAlIaUUpRoFUvsaBZHQLVqJwxnFpB1fZQoaAZoCWgPQwg8Ei9PJxNzQJSGlFKUaBVLxmgWR0C1ajNYGMXKdX2UKGgGaAloD0MIipKQSNupc0CUhpRSlGgVS/RoFkdAtWpENVinYXV9lChoBmgJaA9DCIVcqWfB2nBAlIaUUpRoFUvBaBZHQLVqdZxaPjp1fZQoaAZoCWgPQwjMXraddhFyQJSGlFKUaBVNBQJoFkdAtWqHGDL8rXV9lChoBmgJaA9DCE87/DUZKHFAlIaUUpRoFUvEaBZHQLVq9d9Ujs51fZQoaAZoCWgPQwjeO2pMCG9kQJSGlFKUaBVN6ANoFkdAtWsYMSbpeXV9lChoBmgJaA9DCG6I8ZrX/nJAlIaUUpRoFUvQaBZHQLVrMY0EX+F1fZQoaAZoCWgPQwjmCBnIs99wQJSGlFKUaBVLzmgWR0C1a1nSa3I/dX2UKGgGaAloD0MI8DSZ8fbpcECUhpRSlGgVS81oFkdAtWuBlg+hXnV9lChoBmgJaA9DCHReY5eoiHFAlIaUUpRoFUvfaBZHQLVrkqKP4mF1fZQoaAZoCWgPQwjSOqqa4L5yQJSGlFKUaBVL3mgWR0C1a5wvQF9sdX2UKGgGaAloD0MI0y6mma4ecUCUhpRSlGgVS9BoFkdAtWu3hQ3xWnV9lChoBmgJaA9DCMb4MHuZS3NAlIaUUpRoFUvuaBZHQLVr/l9Brvd1fZQoaAZoCWgPQwgG1nH8UO5xQJSGlFKUaBVLz2gWR0C1bCkr9VFQdX2UKGgGaAloD0MIcZF7urppcUCUhpRSlGgVS+FoFkdAtWxD07KaHHV9lChoBmgJaA9DCC0GD9O+YHJAlIaUUpRoFUvGaBZHQLVsR7HQyAR1fZQoaAZoCWgPQwiGyOnr+TZzQJSGlFKUaBVLymgWR0C1bGHQ6ZH/dX2UKGgGaAloD0MI5Xyx9yLecUCUhpRSlGgVS/toFkdAtWx0vTPSlXV9lChoBmgJaA9DCF8pyxAHLnBAlIaUUpRoFUvJaBZHQLVs5dkrf+F1fZQoaAZoCWgPQwgmqyLcZCxxQJSGlFKUaBVL42gWR0C1bQOhGpdbdX2UKGgGaAloD0MIRtJu9DHfcECUhpRSlGgVS9RoFkdAtW0ZiBoVVXV9lChoBmgJaA9DCIDY0qMplnBAlIaUUpRoFUvGaBZHQLVtIZydWhh1fZQoaAZoCWgPQwhYVpqUQlFwQJSGlFKUaBVL0WgWR0C1bWMHKOktdX2UKGgGaAloD0MIq3e4HRrbcECUhpRSlGgVS+FoFkdAtW2Z/lQuVXV9lChoBmgJaA9DCFN40Ow6y3BAlIaUUpRoFUvpaBZHQLVtuNayKN11fZQoaAZoCWgPQwiG4/kMKHdvQJSGlFKUaBVLx2gWR0C1bdIBV+7UdX2UKGgGaAloD0MIai+i7VhickCUhpRSlGgVS+loFkdAtW3Ukqtoz3V9lChoBmgJaA9DCHcwYp8AsXNAlIaUUpRoFUvLaBZHQLVuBn3+MqB1fZQoaAZoCWgPQwgFNufg2XNyQJSGlFKUaBVLxmgWR0C1bhXzH0btdX2UKGgGaAloD0MIETl9PR8dcECUhpRSlGgVS9ZoFkdAtW44FlkH2XV9lChoBmgJaA9DCDjXMENjd29AlIaUUpRoFUvNaBZHQLVuUvSc9W91fZQoaAZoCWgPQwjLZDiezwdxQJSGlFKUaBVL22gWR0C1bl8VpKzzdX2UKGgGaAloD0MIb0vkgnMYcUCUhpRSlGgVS91oFkdAtW7sxUNrkHV9lChoBmgJaA9DCEOM17yqCUtAlIaUUpRoFUuTaBZHQLVu9KeTV2B1fZQoaAZoCWgPQwiJYYcxaYlvQJSGlFKUaBVL0mgWR0C1bw+14Pf9dX2UKGgGaAloD0MIcsXFUXkKckCUhpRSlGgVS+xoFkdAtW9HZElVtHV9lChoBmgJaA9DCMmrcwyIhXJAlIaUUpRoFU0LAWgWR0C1b3uXu3MIdX2UKGgGaAloD0MI7x8L0SE6cECUhpRSlGgVS9JoFkdAtW/KMrEtNHV9lChoBmgJaA9DCO//44SJuG9AlIaUUpRoFUvIaBZHQLVv7Y4Qz1t1fZQoaAZoCWgPQwhIb7iP3K5AQJSGlFKUaBVLWmgWR0C1b/PVNHpbdX2UKGgGaAloD0MI0QSKWETSZ0CUhpRSlGgVTegDaBZHQLVv+FajesR1fZQoaAZoCWgPQwgkCi3rfjpxQJSGlFKUaBVLyWgWR0C1cAHTAnD0dX2UKGgGaAloD0MITmA6rdv0ckCUhpRSlGgVS+doFkdAtXAEL6UJOXV9lChoBmgJaA9DCGSUZ16ORnFAlIaUUpRoFUv1aBZHQLVwCdQO4G51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 616, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVXwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlEsBfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz/JmZmZmZmaYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC2Fubm90YXRpb25zlH2UjAhxdWFsbmFtZZSMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjAprd2RlZmF1bHRzlE51dFIu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9d4c98d2ee83da88e3a1d94f4103bac11efc31f359643fc1bedb7a0b023b144e
3
- size 143856
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6adbf0ff151b7e26ecf031ede142e4fe53bb2d24c29d077fcd59f25e77bfb35
3
+ size 143846
ppo-LunarLander-v2/data CHANGED
@@ -42,12 +42,12 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 1015808,
46
- "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1651998700.41488,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAA5qVBPa38Bj/QWX083WbSvosTJD3iuK88AAAAAAAAAABm/iO7cS1Guaa6FrSM/Z2vwVTmO8uZqjMAAIA/AACAP7rERz7s1jE/rj5LPfu2176YSyY+xH6ovQAAAAAAAAAAmpkxN2GqjbyYHBC+7cHHOkQ/AD4qYZ+7AACAPwAAgD/znyw+i8vsPbb3Vb6z7mm+ATtiPe7Scj0AAAAAAAAAADOvsbzhVpG6LrIiu9mBmjmpIqK7AjCDOQAAgD8AAIA/ZuZGPNdfQ7sYITG8y7bhPLMfczz6W769AACAPwAAgD8zV70+Pn/6Ppq7xr0m6ai+/ANMPqdtxL0AAAAAAAAAAG5For5WlZI/HiTIvhsior4BSrW+ZmqSvQAAAAAAAAAAGvUFPXskiLo7quu9VwL3PD/jgbv+g9O9AACAPwAAgD8zHN+87CntuQNiVDwLXVA9SPrgO9drLz4AAIA/AACAP2ZOeTtfHa4/CgNbPfm7zb4KPp67E0H0uwAAAAAAAAAARgNYPkdTRT/WCr88UBS1vgSVnD0rW9S8AAAAAAAAAACabYk7dXLCP/+GpTxiMhq9zGibu7XYk7sAAAAAAAAAADMupD1ct3W64pvLPJGdCj1xE6m7hhrrPQAAgD8AAIA/ANp9PAqRT7tSM5W+AOsIvpQlCDwLDzc/AACAPwAAgD+UdJRiLg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,16 +66,16 @@
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gASVXhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwCZr1APuckCUhpRSlIwBbJRNCQGMAXSUR0Crb/8cMmWudX2UKGgGaAloD0MITpfFxGYDc0CUhpRSlGgVTR8BaBZHQKtwhJI1+Ap1fZQoaAZoCWgPQwhhqpm1VIxxQJSGlFKUaBVNAwFoFkdAq3F9UuL743V9lChoBmgJaA9DCLqfU5CfYnJAlIaUUpRoFUv8aBZHQKtyKn3L3bp1fZQoaAZoCWgPQwinlq31hT9zQJSGlFKUaBVL/WgWR0CrckYGUwBYdX2UKGgGaAloD0MINKFJYgmgcECUhpRSlGgVTRUBaBZHQKtyimhM8HR1fZQoaAZoCWgPQwjV7ewrD4ByQJSGlFKUaBVNMgFoFkdAq3KcEkjX4HV9lChoBmgJaA9DCHUGRl4WXXNAlIaUUpRoFU0+AWgWR0CrcubvgFX8dX2UKGgGaAloD0MILv8h/TbfcUCUhpRSlGgVTTgBaBZHQKty/gKnei11fZQoaAZoCWgPQwjd7Xppig5NQJSGlFKUaBVL7WgWR0Crcz9+XqqwdX2UKGgGaAloD0MIZED2evfRb0CUhpRSlGgVS+5oFkdAq3N7mjj7ynV9lChoBmgJaA9DCMB4Bg39UG5AlIaUUpRoFU1XAWgWR0Crc7f47A+IdX2UKGgGaAloD0MIIehoVcsmcECUhpRSlGgVTS8BaBZHQKtzyv8qFyt1fZQoaAZoCWgPQwjbwvNSMVluQJSGlFKUaBVNdAFoFkdAq3QufZmI03V9lChoBmgJaA9DCEYHJGFftHFAlIaUUpRoFU0NAWgWR0CrdHKtPpIMdX2UKGgGaAloD0MIwLFnz2WBckCUhpRSlGgVS/BoFkdAq3SdSEUTMHV9lChoBmgJaA9DCGXggJaujnBAlIaUUpRoFUv5aBZHQKt1OIhQm/p1fZQoaAZoCWgPQwg6HjNQmcJwQJSGlFKUaBVNVQFoFkdAq3YO+h4+r3V9lChoBmgJaA9DCDDa44W0WHBAlIaUUpRoFUvaaBZHQKt2b1cMVlB1fZQoaAZoCWgPQwhAwcWKGmZvQJSGlFKUaBVNHAFoFkdAq3bN0mtyP3V9lChoBmgJaA9DCBzSqMDJbXJAlIaUUpRoFU0EAWgWR0Crdu6nivPkdX2UKGgGaAloD0MIKbAApsy4cUCUhpRSlGgVTQIBaBZHQKt3SIuXeFd1fZQoaAZoCWgPQwjSqwFKQ+tyQJSGlFKUaBVNFQFoFkdAq3dZ5qubJHV9lChoBmgJaA9DCBMPKJsy5nJAlIaUUpRoFUv4aBZHQKt3e1F6Rhd1fZQoaAZoCWgPQwjgLZCgeJJwQJSGlFKUaBVNAgFoFkdAq3fuSntOVXV9lChoBmgJaA9DCHhF8L8VFXBAlIaUUpRoFUv9aBZHQKt4FNs3yZt1fZQoaAZoCWgPQwh8YTJVcNByQJSGlFKUaBVNKgFoFkdAq3hQtUXHinV9lChoBmgJaA9DCL/09ueinm9AlIaUUpRoFU0HAWgWR0CreH+pn6EbdX2UKGgGaAloD0MIZ5lFKPaGcUCUhpRSlGgVS/xoFkdAq3jMoF3Y+XV9lChoBmgJaA9DCOykviwtYXBAlIaUUpRoFU0gAWgWR0CreQekxh2GdX2UKGgGaAloD0MIyM7b2CxIcECUhpRSlGgVTSMBaBZHQKt5yO938oB1fZQoaAZoCWgPQwjqeTcWFGFwQJSGlFKUaBVNHgFoFkdAq3nePcSGrXV9lChoBmgJaA9DCAqgGFmypnBAlIaUUpRoFU0XAWgWR0Crel9eIEbHdX2UKGgGaAloD0MItoMR+wQ8c0CUhpRSlGgVS95oFkdAq3r6Z2IO6XV9lChoBmgJaA9DCLpnXaOlX3FAlIaUUpRoFUv0aBZHQKt7RaIN3GJ1fZQoaAZoCWgPQwihEtcxLtBxQJSGlFKUaBVNIQFoFkdAq3vNRgqmTHV9lChoBmgJaA9DCMzs8xjlFHJAlIaUUpRoFUv0aBZHQKt719kSVW11fZQoaAZoCWgPQwhLH7qgfnlyQJSGlFKUaBVNXAFoFkdAq3yhBqsU7HV9lChoBmgJaA9DCFosRfKVb3FAlIaUUpRoFU0iAWgWR0CrfP+jmCAddX2UKGgGaAloD0MI4Qm9/iTBbUCUhpRSlGgVTR0BaBZHQKt9awLVnVZ1fZQoaAZoCWgPQwguAmN9w0pxQJSGlFKUaBVNFgFoFkdAq31xGjKxLXV9lChoBmgJaA9DCKVKlL0l9nBAlIaUUpRoFU1KAWgWR0CrfaCD28IzdX2UKGgGaAloD0MI9Zz0vnFCbkCUhpRSlGgVS/1oFkdAq4rpYzSCv3V9lChoBmgJaA9DCA6jIHg8/HBAlIaUUpRoFUvyaBZHQKuK9Lzwtrd1fZQoaAZoCWgPQwi3YKkuoFtyQJSGlFKUaBVNMAFoFkdAq4uVgMMI/3V9lChoBmgJaA9DCKSNI9ai6XJAlIaUUpRoFU0FAWgWR0CrjB9ORDCxdX2UKGgGaAloD0MIWriswqYpcECUhpRSlGgVS/1oFkdAq4ykpXp4bHV9lChoBmgJaA9DCIxkj1DzKnFAlIaUUpRoFU10AWgWR0CrjLegL7XQdX2UKGgGaAloD0MIz2VqErwdcUCUhpRSlGgVS/loFkdAq406I55qunV9lChoBmgJaA9DCICAtWqXPnBAlIaUUpRoFU1LAWgWR0CrjaBW5paidX2UKGgGaAloD0MIO+C6YgaPcECUhpRSlGgVTRwBaBZHQKuOQW8h9st1fZQoaAZoCWgPQwi2TfG46GtwQJSGlFKUaBVNEQFoFkdAq46apcX3xnV9lChoBmgJaA9DCP2C3bCtnHBAlIaUUpRoFUvdaBZHQKuPG01IiC91fZQoaAZoCWgPQwgFTyFX6iVuQJSGlFKUaBVNMwFoFkdAq49jOzIFNnV9lChoBmgJaA9DCG/whckUQHFAlIaUUpRoFUv/aBZHQKuPaUB4lhR1fZQoaAZoCWgPQwgdAkcCzUdxQJSGlFKUaBVNEAFoFkdAq5Aho4+8oXV9lChoBmgJaA9DCD83NGWnnnFAlIaUUpRoFU03AWgWR0CrkDakRBeHdX2UKGgGaAloD0MISL99Hbj1cECUhpRSlGgVTQsBaBZHQKuQVIwudwx1fZQoaAZoCWgPQwgqcR3jymNxQJSGlFKUaBVNCwFoFkdAq5BgNb1RL3V9lChoBmgJaA9DCCf3OxTFOXFAlIaUUpRoFUv0aBZHQKuQi0gKWs11fZQoaAZoCWgPQwgIkQw5tlRRQJSGlFKUaBVL52gWR0CrkM4W+GoKdX2UKGgGaAloD0MIy03U0tzscUCUhpRSlGgVS/NoFkdAq5GZGFzuGHV9lChoBmgJaA9DCDepaKx9sW5AlIaUUpRoFU0JAWgWR0CrkflPSDywdX2UKGgGaAloD0MIjSrDuBv2cUCUhpRSlGgVS/NoFkdAq5KCjFhod3V9lChoBmgJaA9DCJkSSfQymHJAlIaUUpRoFUv1aBZHQKuTJqh11W91fZQoaAZoCWgPQwhUjPM3oaNtQJSGlFKUaBVNOgFoFkdAq5OSTjebeHV9lChoBmgJaA9DCMMrSZ5rnXJAlIaUUpRoFU0AAWgWR0CrlDsVLzwudX2UKGgGaAloD0MI16TbEnnOckCUhpRSlGgVTdYBaBZHQKuUSCGvfTF1fZQoaAZoCWgPQwhpq5LIfpVyQJSGlFKUaBVL/2gWR0CrlHuLBKtgdX2UKGgGaAloD0MIN1X3yGbRbECUhpRSlGgVTS0BaBZHQKuUrokiUxF1fZQoaAZoCWgPQwh6NxYURmpwQJSGlFKUaBVL7mgWR0CrlPGMGX5WdX2UKGgGaAloD0MIK/htiHGLcECUhpRSlGgVS+loFkdAq5UB26kIonV9lChoBmgJaA9DCEuuYvFb0HBAlIaUUpRoFUviaBZHQKuVDo8p1A91fZQoaAZoCWgPQwhfJR+7i7ZwQJSGlFKUaBVNJQFoFkdAq5U43Jgb63V9lChoBmgJaA9DCOZd9YA5TnJAlIaUUpRoFU0ZAWgWR0CrlZs41gpjdX2UKGgGaAloD0MIlWbzOEx3ckCUhpRSlGgVS/5oFkdAq5XHS4OMEXV9lChoBmgJaA9DCKnZA62ANnNAlIaUUpRoFUvjaBZHQKuWCKWszVN1fZQoaAZoCWgPQwi+Mm/VNbxwQJSGlFKUaBVNCwFoFkdAq5doYm9g4XV9lChoBmgJaA9DCCe9b3ztK29AlIaUUpRoFU0GAWgWR0Crl9Sv1UVBdX2UKGgGaAloD0MIyqfHtgyeb0CUhpRSlGgVTY0BaBZHQKuYOvQnhKl1fZQoaAZoCWgPQwi6Mqg2+OFxQJSGlFKUaBVL/2gWR0CrmFE1l5GCdX2UKGgGaAloD0MI8l8gCJA3cECUhpRSlGgVS/FoFkdAq5kO5J9RaXV9lChoBmgJaA9DCKKXUSy3CXJAlIaUUpRoFUv4aBZHQKuZJrtVrAR1fZQoaAZoCWgPQwhGX0GacXJwQJSGlFKUaBVNNwFoFkdAq5nRaJQ+EHV9lChoBmgJaA9DCDlFR3J5onBAlIaUUpRoFU0mAWgWR0CrmprwvxpddX2UKGgGaAloD0MIFk1nJ8M/cUCUhpRSlGgVTQ4BaBZHQKuat1Tzd1x1fZQoaAZoCWgPQwhYU1kU9olyQJSGlFKUaBVNKQFoFkdAq5r3oPkJbHV9lChoBmgJaA9DCGeZRSg2nW5AlIaUUpRoFU0mAWgWR0Crmwf7zkIYdX2UKGgGaAloD0MIL90kBgHAcECUhpRSlGgVTQsBaBZHQKubJVinYQJ1fZQoaAZoCWgPQwgiNIKNa19wQJSGlFKUaBVNMAFoFkdAq5ssNUfgaXV9lChoBmgJaA9DCAjlfRyNpHFAlIaUUpRoFUv1aBZHQKubMrtmcvx1fZQoaAZoCWgPQwjVB5J3zjVxQJSGlFKUaBVNVAFoFkdAq5tRzRx95XV9lChoBmgJaA9DCCyazk4GvG9AlIaUUpRoFU03AWgWR0CrnA/pljEvdX2UKGgGaAloD0MIscBXdOvFcUCUhpRSlGgVTRYBaBZHQKucxPHktEp1fZQoaAZoCWgPQwjyeFp+YFxvQJSGlFKUaBVNHgFoFkdAq51P2IwdsHV9lChoBmgJaA9DCJGYoIZv3W5AlIaUUpRoFU0MAWgWR0CrnWF6Rhc8dX2UKGgGaAloD0MI+64I/rdncUCUhpRSlGgVTR0BaBZHQKudyer+5vt1fZQoaAZoCWgPQwhKsg5HV5pxQJSGlFKUaBVNAQFoFkdAq54OsNlRQHV9lChoBmgJaA9DCKmkTkCTE3JAlIaUUpRoFU0AAWgWR0CrnqFdszl+dX2UKGgGaAloD0MIvjPaquSgcUCUhpRSlGgVS+poFkdAq57mhkAggXVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 248,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 1507328,
46
+ "_total_timesteps": 1500000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1652000470.2462664,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAswLCvZ8onbtSt8I8sB40PKlE4rxyYB09AACAPwAAgD+Nj949FY0FP1hgr7x68Au/KFvTPWoY3r0AAAAAAAAAAJrY1L17lJa4nzywu/s5Bjb1nng7Did6tQAAAAAAAAAADf0HvpUWlD+seh2/uaIJv4EdDL5z+pW+AAAAAAAAAAAA1lC9UKu2P1O82b7stYq9j2YGvX2STb4AAAAAAAAAAJ1WWb5jFPc+G71fPlSo7r7L8L68f7gwvAAAAAAAAAAAzXSOuylobLqKVTC1KzyasIre3ThmqVo0AACAPwAAgD+aTpO87N+Lu3KLED6VdoM823rvvCpEYT0AAIA/AACAP8BL3T0dNmQ/kx5EPnnCIr/bK3I+6d24PQAAAAAAAAAAEw+QPu5/uT66uIq+FmkDv7Jbij7a0xO+AAAAAAAAAAAAxhi9L+tGPgUS4LsVZbS+Z0nfPGphzDwAAAAAAAAAAKCmBz4oPq0/yI8vP7TjvL6mm509sH6JPgAAAAAAAAAAzZY/vI8PvT9xfKu9UsYVPbEJqLyambe8AAAAAAAAAACa60Q8n3OlP9q9sz1irBC/CiJIPP5lCj0AAAAAAAAAAFM6CL6fO6i7+LmOO9MQGTq7ku88EDABuwAAAAAAAAAAzVaFvAp6vD+A05m9Wykfvj0Rj7wxuQK8AAAAAAAAAACUdJRiLg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.004885333333333408,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQKIJFDFkcECUhpRSlIwBbJRN1QGMAXSUR0C1XFxyn1nNdX2UKGgGaAloD0MI/z147VKCcUCUhpRSlGgVS9loFkdAtVx7LidauHV9lChoBmgJaA9DCIqT+x1Kk3BAlIaUUpRoFUveaBZHQLVctIE8q4J1fZQoaAZoCWgPQwhDOGbZUz5yQJSGlFKUaBVL32gWR0C1XL91loUSdX2UKGgGaAloD0MIeJeL+E7mbkCUhpRSlGgVS8ZoFkdAtV0WEYfnwHV9lChoBmgJaA9DCGuad5xiVXFAlIaUUpRoFUvKaBZHQLVdGsGxD9h1fZQoaAZoCWgPQwi/gF64Mz1xQJSGlFKUaBVL4GgWR0C1XSo/Z/TcdX2UKGgGaAloD0MINKDejBoAckCUhpRSlGgVS+doFkdAtV09j5Kvm3V9lChoBmgJaA9DCAtBDkpYQ3JAlIaUUpRoFUvKaBZHQLVdRNXo1UF1fZQoaAZoCWgPQwjrw3qjFsFwQJSGlFKUaBVLwmgWR0C1XXo77sOYdX2UKGgGaAloD0MILLe0GlI+cUCUhpRSlGgVS+BoFkdAtV1/ps41g3V9lChoBmgJaA9DCOfj2lCxv3NAlIaUUpRoFUvGaBZHQLVdif16E8J1fZQoaAZoCWgPQwh9emzLQBFzQJSGlFKUaBVLvGgWR0C1XY5OrQw9dX2UKGgGaAloD0MIFeRnI5cOckCUhpRSlGgVS81oFkdAtV2kyWRigHV9lChoBmgJaA9DCEVoBBvXnUhAlIaUUpRoFUuVaBZHQLVd41RceKd1fZQoaAZoCWgPQwhp/pjWJnpyQJSGlFKUaBVNBgFoFkdAtV4A/PgNw3V9lChoBmgJaA9DCL+2fvpPCW9AlIaUUpRoFUvcaBZHQLVec974SHx1fZQoaAZoCWgPQwjcnbXbLplyQJSGlFKUaBVL/WgWR0C1XnxTS9dvdX2UKGgGaAloD0MIOnR63g06cUCUhpRSlGgVS8FoFkdAtV7TzjFQ23V9lChoBmgJaA9DCM8sCVDTQnBAlIaUUpRoFUvSaBZHQLVe8r3j+711fZQoaAZoCWgPQwh1BduIJ15wQJSGlFKUaBVL52gWR0C1XvhsImgKdX2UKGgGaAloD0MIhnR4CCOYckCUhpRSlGgVS8ZoFkdAtV8h/FzdUXV9lChoBmgJaA9DCBghPNq4T3NAlIaUUpRoFU1dAWgWR0C1Xy+qebuudX2UKGgGaAloD0MIlDDT9u8ackCUhpRSlGgVS/ZoFkdAtV8vOoo/inV9lChoBmgJaA9DCLqe6LrwcXJAlIaUUpRoFUvAaBZHQLVfQPq9oOB1fZQoaAZoCWgPQwhA2ZQrvDNxQJSGlFKUaBVLzWgWR0C1X0IlY2bYdX2UKGgGaAloD0MIG2X9ZiIZcUCUhpRSlGgVTRIBaBZHQLVfWKMefZp1fZQoaAZoCWgPQwj2m4npwidzQJSGlFKUaBVL6mgWR0C1X2g/LTx5dX2UKGgGaAloD0MIFk1nJ8M4cUCUhpRSlGgVS+RoFkdAtV9sHkcS5HV9lChoBmgJaA9DCKFns+pzx3BAlIaUUpRoFUvDaBZHQLVfil+Vkc11fZQoaAZoCWgPQwhoIJbNnDJwQJSGlFKUaBVL2mgWR0C1X9N/nW8RdX2UKGgGaAloD0MIBvaYSGkpbkCUhpRSlGgVS8FoFkdAtWAT2exwAHV9lChoBmgJaA9DCEgzFk0nj3BAlIaUUpRoFUvOaBZHQLVmy+gDifh1fZQoaAZoCWgPQwj0piIVxmlyQJSGlFKUaBVL0mgWR0C1ZzQWepXIdX2UKGgGaAloD0MI86/llatWcECUhpRSlGgVS8JoFkdAtWdd+TeO43V9lChoBmgJaA9DCBQGZRrNkXBAlIaUUpRoFUvBaBZHQLVne2nKnvV1fZQoaAZoCWgPQwjWjAxy1w1zQJSGlFKUaBVLzWgWR0C1Z4Qxzq8ldX2UKGgGaAloD0MIYFlpUsp8cUCUhpRSlGgVS89oFkdAtWeICEHt4XV9lChoBmgJaA9DCI6yfjNxRXJAlIaUUpRoFUv+aBZHQLVntRoh6jZ1fZQoaAZoCWgPQwhNg6J5wERxQJSGlFKUaBVLyGgWR0C1Z7u2/i5vdX2UKGgGaAloD0MIzEBl/LvKckCUhpRSlGgVTQEBaBZHQLVnwTJyQxN1fZQoaAZoCWgPQwiVgQNaeptxQJSGlFKUaBVL1mgWR0C1Z9PvOQhfdX2UKGgGaAloD0MITKlLxnGYckCUhpRSlGgVS+9oFkdAtWffzSThYXV9lChoBmgJaA9DCCJQ/YMIlHFAlIaUUpRoFUvXaBZHQLVn+ru6VdJ1fZQoaAZoCWgPQwiH4LiMm1o6QJSGlFKUaBVLX2gWR0C1aAJUYKpldX2UKGgGaAloD0MIABsQIe4bc0CUhpRSlGgVS91oFkdAtWhS2mYShHV9lChoBmgJaA9DCJpC5zV25XFAlIaUUpRoFUvfaBZHQLVooTL4etF1fZQoaAZoCWgPQwjpD808eSxyQJSGlFKUaBVLxWgWR0C1aROvUz9CdX2UKGgGaAloD0MI+P2bF+crckCUhpRSlGgVS6toFkdAtWkzgeii7HV9lChoBmgJaA9DCAu0O6SYGm5AlIaUUpRoFUvUaBZHQLVpY9LpRoB1fZQoaAZoCWgPQwjDt7Bu/ApzQJSGlFKUaBVL2mgWR0C1aXeuaF23dX2UKGgGaAloD0MIDr3FwzufckCUhpRSlGgVS+VoFkdAtWmEuanaWXV9lChoBmgJaA9DCGxAhLgySnFAlIaUUpRoFUvLaBZHQLVpkOu7pV11fZQoaAZoCWgPQwi5wrtcRPxwQJSGlFKUaBVL1mgWR0C1acSRGMGYdX2UKGgGaAloD0MIpdk8DgMuckCUhpRSlGgVS9NoFkdAtWnL4Kx9onV9lChoBmgJaA9DCJ+QnbcxBXFAlIaUUpRoFUvsaBZHQLVqJwxnFpB1fZQoaAZoCWgPQwg8Ei9PJxNzQJSGlFKUaBVLxmgWR0C1ajNYGMXKdX2UKGgGaAloD0MIipKQSNupc0CUhpRSlGgVS/RoFkdAtWpENVinYXV9lChoBmgJaA9DCIVcqWfB2nBAlIaUUpRoFUvBaBZHQLVqdZxaPjp1fZQoaAZoCWgPQwjMXraddhFyQJSGlFKUaBVNBQJoFkdAtWqHGDL8rXV9lChoBmgJaA9DCE87/DUZKHFAlIaUUpRoFUvEaBZHQLVq9d9Ujs51fZQoaAZoCWgPQwjeO2pMCG9kQJSGlFKUaBVN6ANoFkdAtWsYMSbpeXV9lChoBmgJaA9DCG6I8ZrX/nJAlIaUUpRoFUvQaBZHQLVrMY0EX+F1fZQoaAZoCWgPQwjmCBnIs99wQJSGlFKUaBVLzmgWR0C1a1nSa3I/dX2UKGgGaAloD0MI8DSZ8fbpcECUhpRSlGgVS81oFkdAtWuBlg+hXnV9lChoBmgJaA9DCHReY5eoiHFAlIaUUpRoFUvfaBZHQLVrkqKP4mF1fZQoaAZoCWgPQwjSOqqa4L5yQJSGlFKUaBVL3mgWR0C1a5wvQF9sdX2UKGgGaAloD0MI0y6mma4ecUCUhpRSlGgVS9BoFkdAtWu3hQ3xWnV9lChoBmgJaA9DCMb4MHuZS3NAlIaUUpRoFUvuaBZHQLVr/l9Brvd1fZQoaAZoCWgPQwgG1nH8UO5xQJSGlFKUaBVLz2gWR0C1bCkr9VFQdX2UKGgGaAloD0MIcZF7urppcUCUhpRSlGgVS+FoFkdAtWxD07KaHHV9lChoBmgJaA9DCC0GD9O+YHJAlIaUUpRoFUvGaBZHQLVsR7HQyAR1fZQoaAZoCWgPQwiGyOnr+TZzQJSGlFKUaBVLymgWR0C1bGHQ6ZH/dX2UKGgGaAloD0MI5Xyx9yLecUCUhpRSlGgVS/toFkdAtWx0vTPSlXV9lChoBmgJaA9DCF8pyxAHLnBAlIaUUpRoFUvJaBZHQLVs5dkrf+F1fZQoaAZoCWgPQwgmqyLcZCxxQJSGlFKUaBVL42gWR0C1bQOhGpdbdX2UKGgGaAloD0MIRtJu9DHfcECUhpRSlGgVS9RoFkdAtW0ZiBoVVXV9lChoBmgJaA9DCIDY0qMplnBAlIaUUpRoFUvGaBZHQLVtIZydWhh1fZQoaAZoCWgPQwhYVpqUQlFwQJSGlFKUaBVL0WgWR0C1bWMHKOktdX2UKGgGaAloD0MIq3e4HRrbcECUhpRSlGgVS+FoFkdAtW2Z/lQuVXV9lChoBmgJaA9DCFN40Ow6y3BAlIaUUpRoFUvpaBZHQLVtuNayKN11fZQoaAZoCWgPQwiG4/kMKHdvQJSGlFKUaBVLx2gWR0C1bdIBV+7UdX2UKGgGaAloD0MIai+i7VhickCUhpRSlGgVS+loFkdAtW3Ukqtoz3V9lChoBmgJaA9DCHcwYp8AsXNAlIaUUpRoFUvLaBZHQLVuBn3+MqB1fZQoaAZoCWgPQwgFNufg2XNyQJSGlFKUaBVLxmgWR0C1bhXzH0btdX2UKGgGaAloD0MIETl9PR8dcECUhpRSlGgVS9ZoFkdAtW44FlkH2XV9lChoBmgJaA9DCDjXMENjd29AlIaUUpRoFUvNaBZHQLVuUvSc9W91fZQoaAZoCWgPQwjLZDiezwdxQJSGlFKUaBVL22gWR0C1bl8VpKzzdX2UKGgGaAloD0MIb0vkgnMYcUCUhpRSlGgVS91oFkdAtW7sxUNrkHV9lChoBmgJaA9DCEOM17yqCUtAlIaUUpRoFUuTaBZHQLVu9KeTV2B1fZQoaAZoCWgPQwiJYYcxaYlvQJSGlFKUaBVL0mgWR0C1bw+14Pf9dX2UKGgGaAloD0MIcsXFUXkKckCUhpRSlGgVS+xoFkdAtW9HZElVtHV9lChoBmgJaA9DCMmrcwyIhXJAlIaUUpRoFU0LAWgWR0C1b3uXu3MIdX2UKGgGaAloD0MI7x8L0SE6cECUhpRSlGgVS9JoFkdAtW/KMrEtNHV9lChoBmgJaA9DCO//44SJuG9AlIaUUpRoFUvIaBZHQLVv7Y4Qz1t1fZQoaAZoCWgPQwhIb7iP3K5AQJSGlFKUaBVLWmgWR0C1b/PVNHpbdX2UKGgGaAloD0MI0QSKWETSZ0CUhpRSlGgVTegDaBZHQLVv+FajesR1fZQoaAZoCWgPQwgkCi3rfjpxQJSGlFKUaBVLyWgWR0C1cAHTAnD0dX2UKGgGaAloD0MITmA6rdv0ckCUhpRSlGgVS+doFkdAtXAEL6UJOXV9lChoBmgJaA9DCGSUZ16ORnFAlIaUUpRoFUv1aBZHQLVwCdQO4G51ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 616,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e956560bf989c72940cdfc4196f97407a0760ba9c315afb9b64bb806a80bb47c
3
- size 84829
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de215115bae5cdda8372908a71bf38e89a99279d7f4eae6d46aaedd623cf3aa2
3
+ size 84893
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ea35d40c0e40b9392bd3a4b01b85ee5845f3a833210429980d339564004fd20e
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a523770bc3986018c685b0d2ca093c222526b503f3dc5a4acbebf401e840f89
3
  size 43201
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5947c1379a4ffc73714878b34ede480963723060b457b14a8a2632a70bd813f9
3
- size 253318
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ff659569eab9ae944055087f7213ce22f196f8b69393810469cfe7685eebde5
3
+ size 236369
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 248.22957189639834, "std_reward": 24.727764110838866, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T08:58:49.357339"}
 
1
+ {"mean_reward": 291.62695581952966, "std_reward": 15.402994669000456, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T09:43:42.036621"}