diamandislabii commited on
Commit
d92ceda
·
verified ·
1 Parent(s): 34295b7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -3
README.md CHANGED
@@ -1,3 +1,32 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - vision
5
+ - image-classification
6
+ ---
7
+
8
+ ### (Lung) Lung Adenocarcinoma
9
+
10
+ This model can additionally be run on our [pathology reports platform](https://www.pathologyreports.ai/marketplace/browse/40e62b8e-f41b-4ff1-90d8-03940c11068a)
11
+
12
+ Credits: Dr. Assem Alrumeh
13
+
14
+ ### Introduction
15
+
16
+ This H&E lung adenocarcinoma tissue classifier was developed using transfer learning on a histology optimized version of the VGG19 CNN [(DOI: 10.1038/s42256-019-0068-6)](https://doi.org/10.1038/s42256-019-0068-6) and trained to recognize lung adenocarcinoma and other surrounding tissue elements.
17
+ Annotations were carried out on batches of image tiles (dimensions: 256 x 256 um) grouped using image-based clustering [(HAVOC, DOI: 10.1126/sciadv.adg1894)](https://doi.org/10.1126/sciadv.adg1894) from 10 publicly available TCGA-LUAD H&E-stained whole slide images. Validation testing was carried out on non-overlapping cases from TCGA.
18
+
19
+
20
+ ### Classes
21
+ 1. Adenocarcinoma
22
+ 2. Blank space
23
+ 3. Fibroconnective and stromal elements
24
+ 4. Lung parenchyma
25
+ 5. Lymphoid tissue
26
+ 6. Necrosis
27
+
28
+ This information can be found in the inference.json file
29
+
30
+ ### Evaluation Metrics
31
+
32
+ Classifier validation can be found on the [pathology reports platform](https://www.pathologyreports.ai/marketplace/browse/40e62b8e-f41b-4ff1-90d8-03940c11068a)