{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bda006cb370>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bda006cb400>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bda006cb490>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bda006cb520>", "_build": "<function ActorCriticPolicy._build at 0x7bda006cb5b0>", "forward": "<function ActorCriticPolicy.forward at 0x7bda006cb640>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bda006cb6d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bda006cb760>", "_predict": "<function ActorCriticPolicy._predict at 0x7bda006cb7f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bda006cb880>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bda006cb910>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bda006cb9a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bda0086a580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717340384443923823, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYhOT1L2OM9R7Ypvra2l76XMG28xCOPvQAAAAAAAAAA883IPfnUBj8tVno9zthuvu7HyT22z3m9AAAAAAAAAADaoq09e9afuqqqUbS8jw2vy8nKuh6anTMAAIA/AACAP4AuML705h4+YseQPkXGYb52WG094Fz9PQAAAAAAAAAAM5nPvODTtT9yjfm+ZEYEPW/cDzxKiU69AAAAAAAAAAAzWjC9Usytu3fcNz1LpTm+9/MRPJdVC78AAIA/AACAP4COR70+x5Y/HCGBvqwl/b7eYBm94nUgvgAAAAAAAAAAmjlPPVwDHrqXz4s5AoCtNW+5pjrS6KS4AACAPwAAgD9bJLu+3LG7PiLQXz7b24u+ITtmvrtvBT4AAAAAAAAAALPtiT1735E9G41dvm+Xhb5hHDy9Sm5UPAAAAAAAAAAAM4sfO1zLCrrjZ8G0AERfLhSukbt8CJ4zAACAPwAAgD/Acbk9jsaRP7DXmD4uYu2+2BmyPelVlT0AAAAAAAAAAIAzBj0FUaQ/TtkkPpBY0b5bo7Q85hLVOQAAAAAAAAAAzU/JPCn4V7qN8tizw3BcLkCIMDh+EcQzAACAPwAAgD/mCMw90TuZPXYQk7ywblO+y/07PZrfBz0AAAAAAAAAAGbMnb0pTZk/ShXCvk2n9r71D6C9w69JvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJiB3eN1heMAWyUTQ4BjAF0lEdApAs2x8lXzXV9lChoBkdAcpLXwb2lEmgHS/hoCEdApAtzGJemenV9lChoBkdAcnbokAxSHmgHTXMCaAhHQKQLmpPRArx1fZQoaAZHQHBl2bgCOm1oB0v4aAhHQKQL5gFX7tR1fZQoaAZHQHJmlw5vLoxoB0v/aAhHQKQMHmjj7yh1fZQoaAZHQHJHeY6XBxhoB00SAWgIR0CkDIRfv4M4dX2UKGgGR0BxbczSCvovaAdNNgFoCEdApAytXLeQ+3V9lChoBkdAcfQHJLdvbWgHTSQBaAhHQKQMwB3A2yd1fZQoaAZHQHJgaAOJ+DxoB00WAWgIR0CkDMo6bONYdX2UKGgGR0Bv5xZB9kSVaAdNAQFoCEdApA0CeTV2BHV9lChoBkdAbqn0HQhOg2gHTR0BaAhHQKQNJrM1TBJ1fZQoaAZHQG+GVFYuCf9oB00KAWgIR0CkDUmKhtcfdX2UKGgGR0BwlLilzltCaAdNCAFoCEdApA1hJRO1v3V9lChoBkdAclVQ+lj3EmgHTQoBaAhHQKQNbSJCSid1fZQoaAZHQHBgkDdP+GZoB00gAWgIR0CkDheHaewtdX2UKGgGR0BxSU4EOiFkaAdL9WgIR0CkDjaSs8xLdX2UKGgGR0BvQpJAdGRWaAdNDAFoCEdApA9WajN6gXV9lChoBkdAcQlr4WUKRmgHTQYBaAhHQKQPc63iJfp1fZQoaAZHQHDOFkhA4XJoB005AWgIR0CkD9Ieo1k2dX2UKGgGR0BuZfSro4dZaAdNDQFoCEdApA/6wdKdx3V9lChoBkdAce7dHDrJKmgHS+JoCEdApBAyDGtITXV9lChoBkdAcM9XCCSRsGgHS+toCEdApBBzOPeYUnV9lChoBkdAbYUQaJhvzmgHS/NoCEdApBCsebNKRXV9lChoBkdAcceRqoIfKmgHTSIBaAhHQKQQrBomG/N1fZQoaAZHQHDnfWtlqahoB00cAWgIR0CkEQ7+T/yYdX2UKGgGR0ByvBUMoc7yaAdL7mgIR0CkERzlLeyidX2UKGgGR0BxgCmDUVi4aAdL9GgIR0CkEXgAZKnOdX2UKGgGR0BzF1oHs1KoaAdL/2gIR0CkEbxqwhW6dX2UKGgGR0BzQpM36yjYaAdNJgFoCEdApBHa1E3KjnV9lChoBkdAbk5bHp8neGgHTRMBaAhHQKQR4Vlf7aZ1fZQoaAZHQGx88H4XXRRoB00gAWgIR0CkE0j7yhBadX2UKGgGR0BywDYL9deIaAdNKAFoCEdApBNO/BWPtHV9lChoBkdAckQj7ALy+mgHTQcBaAhHQKQT2eaKDTV1fZQoaAZHQHB7zlLeyiVoB00PAWgIR0CkFAnnEETydX2UKGgGR0ByDvBInSfEaAdL72gIR0CkFCokZ75VdX2UKGgGR0BuTYaWHDaXaAdL9WgIR0CkFHD+717IdX2UKGgGR0BxKiksSTQmaAdNEQFoCEdApBR2FcpsoHV9lChoBkdAcqJ3WFvhqGgHTR8BaAhHQKQUiNtIkJN1fZQoaAZHQHB9IoNNJvpoB00EAWgIR0CkHZ8/UvwmdX2UKGgGR0ByTCDQJHAiaAdNCgFoCEdApB2xiobXH3V9lChoBkdAcGaOOKfnOmgHS/RoCEdApB26mygPE3V9lChoBkdAcNmtVrAP/mgHTQ8BaAhHQKQeBdY4hll1fZQoaAZHQHGlwPAfuCxoB0v2aAhHQKQeUMo+fRN1fZQoaAZHQHCQu+M6zVtoB00RAWgIR0CkHlsi8nNQdX2UKGgGR0Bu2VH6MzdlaAdNBAFoCEdApB557Z39rHV9lChoBkdAbiAlhw2l22gHTRABaAhHQKQeh531SO11fZQoaAZHQG90D9n9NvhoB00VAWgIR0CkH7RZ2ZAqdX2UKGgGR0Byx9gmZ3LWaAdLzmgIR0CkH+9IPK+0dX2UKGgGR0BxM1ePaL4vaAdL+WgIR0CkIB6FVT73dX2UKGgGR0BzO1LnLaEjaAdNEwFoCEdApCBQPTXrdHV9lChoBkdAbzGJXyRSxmgHTUIBaAhHQKQgbDTjNpx1fZQoaAZHQG7OM2eg+QloB0vzaAhHQKQge79Q40d1fZQoaAZHQHKFgDNhVlxoB0vvaAhHQKQghx82Ji11fZQoaAZHQHOf76ciGFloB0vjaAhHQKQgnCIDYAd1fZQoaAZHQHF9Epd8iOhoB0vvaAhHQKQg01fmcON1fZQoaAZHQHOuqekHlfZoB004AWgIR0CkIR01Q66rdX2UKGgGR0BxJ1J5E+gUaAdL+mgIR0CkIVYfwI+odX2UKGgGR0BwIE4Ia99MaAdNHQFoCEdApCF7QeFL4HV9lChoBkdAcVA0OmR/3GgHS/BoCEdApCGu4mTkhnV9lChoBkdActdo7FKkEmgHS/1oCEdApCG5LTQVsXV9lChoBkdAc0IZOzposmgHS/xoCEdApCHd4Z/CqXV9lChoBkdAbVelCTlkpmgHTREBaAhHQKQh53UQTVV1fZQoaAZHQHEPSqZML4NoB00IAWgIR0CkIxTabnX/dX2UKGgGR0Bxm/PUrkKeaAdNAwFoCEdApCM8uctoSXV9lChoBkdAcH4zZpSJj2gHS+9oCEdApCNju2JBPnV9lChoBkdAbokF1SwW32gHTQIBaAhHQKQjuCKaXrt1fZQoaAZHQHJtn9FWn0loB00ZAWgIR0CkI7dr433pdX2UKGgGR0BwKOKAJ9iMaAdNEwFoCEdApCQc87p3YHV9lChoBkdAcdP2GIsRQWgHTSoBaAhHQKQkJGnXNC91fZQoaAZHQHLFPDpC8e1oB00gAWgIR0CkJDNvwVj7dX2UKGgGR0BxKz557gKnaAdNDAFoCEdApCRAkcCHRHV9lChoBkdAclNsCT2WZGgHTQYBaAhHQKQkbd30PH11fZQoaAZHQHKxx7qptJpoB00KAWgIR0CkJKw0O3DvdX2UKGgGR0Bu0BDu0CzUaAdNCAFoCEdApCTGDzyz5XV9lChoBkdAcQRhcqvvB2gHS/9oCEdApCTZCpm29nV9lChoBkdAciaXizcAR2gHTQgBaAhHQKQk+7U5MlF1fZQoaAZHQG4lC4Bmwq1oB0v6aAhHQKQk+gZCOWB1fZQoaAZHQHClTKcNH6NoB00bAWgIR0CkJVZFgDzRdX2UKGgGR0BwIgC4jKPoaAdNDgFoCEdApCZxSk0rLHV9lChoBkdAcotwfQrtmmgHTR4BaAhHQKQm2e0Xxe91fZQoaAZHQHHw9Y0VJtloB0vgaAhHQKQnAYCyQgd1fZQoaAZHQHF9AZGax5doB00LAWgIR0CkJxT5wfhddX2UKGgGR0Bw2pFSbYseaAdL7mgIR0CkJyVbA1vVdX2UKGgGR0BvxDVBlcyFaAdNEgFoCEdApCcvkgfU4XV9lChoBkdAcHI4wAU+LWgHTTUBaAhHQKQnWQJ5VwR1fZQoaAZHQHJfdFvybx5oB00FAWgIR0CkJ2AXVLBbdX2UKGgGR0BuYMBnzxwyaAdL/GgIR0CkJ7Fhw2l3dX2UKGgGR0By9YUGmk30aAdNMwFoCEdApCg6aAnUlXV9lChoBkdAch897F85S2gHS/1oCEdApCg6ULUkOnV9lChoBkdAb4kscyWRimgHTQQBaAhHQKQocULUkOZ1fZQoaAZHQHAZDV2A5JdoB00kAWgIR0CkKLCIUJv6dX2UKGgGR0BwIXwe/5+IaAdNEAFoCEdApCjM6DGtIXV9lChoBkdAb5U1pCa7VmgHTQ0BaAhHQKQpRzTWoWJ1fZQoaAZHQHGb+0ojOcFoB002AWgIR0CkKV/U4JeFdX2UKGgGR0BwblxCIDYAaAdL4WgIR0CkKgIK2KEWdX2UKGgGR0BytfpC8e0YaAdL6mgIR0CkK4vFefI0dX2UKGgGR0BwMgqDsdDIaAdNAAFoCEdApCud83Mpw3V9lChoBkdAcoJJiRW912gHS/BoCEdApCu7isGPgnV9lChoBkdAcT2Nucc2i2gHTRUBaAhHQKQrwQRPGhp1fZQoaAZHQHFUC3PRiPRoB00MAWgIR0CkLAixeLNwdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |