File size: 4,216 Bytes
8174331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: t5-base-finetuned-en-to-it-lrs
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-base-finetuned-en-to-it-lrs

This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4687
- Bleu: 22.9793
- Gen Len: 49.8367

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu    | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 1.4378        | 1.0   | 1125  | 1.9365          | 12.0299 | 55.7007 |
| 1.229         | 2.0   | 2250  | 1.8493          | 15.9175 | 51.6293 |
| 1.0996        | 3.0   | 3375  | 1.7781          | 17.5103 | 51.666  |
| 0.9979        | 4.0   | 4500  | 1.7309          | 18.8603 | 50.8587 |
| 0.9421        | 5.0   | 5625  | 1.6839          | 19.8188 | 50.4767 |
| 0.9181        | 6.0   | 6750  | 1.6602          | 20.5693 | 50.272  |
| 0.8882        | 7.0   | 7875  | 1.6386          | 20.9771 | 50.3833 |
| 0.8498        | 8.0   | 9000  | 1.6252          | 21.2237 | 50.5093 |
| 0.8356        | 9.0   | 10125 | 1.6079          | 21.3987 | 50.31   |
| 0.8164        | 10.0  | 11250 | 1.5698          | 21.5409 | 50.388  |
| 0.8001        | 11.0  | 12375 | 1.5779          | 21.7354 | 49.822  |
| 0.7805        | 12.0  | 13500 | 1.5637          | 21.9649 | 49.8213 |
| 0.764         | 13.0  | 14625 | 1.5540          | 22.1342 | 50.2    |
| 0.7594        | 14.0  | 15750 | 1.5456          | 22.2318 | 50.0147 |
| 0.7355        | 15.0  | 16875 | 1.5309          | 22.2936 | 49.7693 |
| 0.7343        | 16.0  | 18000 | 1.5247          | 22.5065 | 49.7607 |
| 0.7231        | 17.0  | 19125 | 1.5231          | 22.3902 | 49.7733 |
| 0.7183        | 18.0  | 20250 | 1.5211          | 22.3672 | 49.8313 |
| 0.7068        | 19.0  | 21375 | 1.5075          | 22.5519 | 49.7433 |
| 0.7087        | 20.0  | 22500 | 1.5006          | 22.4827 | 49.5    |
| 0.6965        | 21.0  | 23625 | 1.4978          | 22.5907 | 49.6833 |
| 0.6896        | 22.0  | 24750 | 1.4955          | 22.6286 | 49.836  |
| 0.689         | 23.0  | 25875 | 1.4924          | 22.7052 | 49.7267 |
| 0.6793        | 24.0  | 27000 | 1.4890          | 22.7444 | 49.8393 |
| 0.6708        | 25.0  | 28125 | 1.4889          | 22.6821 | 49.8673 |
| 0.6671        | 26.0  | 29250 | 1.4835          | 22.7866 | 49.676  |
| 0.6652        | 27.0  | 30375 | 1.4853          | 22.7691 | 49.7107 |
| 0.6578        | 28.0  | 31500 | 1.4787          | 22.8173 | 49.738  |
| 0.6556        | 29.0  | 32625 | 1.4777          | 22.7408 | 49.6687 |
| 0.6592        | 30.0  | 33750 | 1.4772          | 22.8371 | 49.7307 |
| 0.6546        | 31.0  | 34875 | 1.4819          | 22.8398 | 49.6053 |
| 0.6465        | 32.0  | 36000 | 1.4741          | 22.8379 | 49.658  |
| 0.6381        | 33.0  | 37125 | 1.4691          | 22.9108 | 49.8113 |
| 0.6429        | 34.0  | 38250 | 1.4660          | 22.9405 | 49.7933 |
| 0.6381        | 35.0  | 39375 | 1.4701          | 22.8777 | 49.7467 |
| 0.6454        | 36.0  | 40500 | 1.4692          | 22.9225 | 49.7227 |
| 0.635         | 37.0  | 41625 | 1.4683          | 22.9914 | 49.6767 |
| 0.6389        | 38.0  | 42750 | 1.4691          | 22.9904 | 49.7133 |
| 0.6368        | 39.0  | 43875 | 1.4679          | 22.9962 | 49.8273 |
| 0.6345        | 40.0  | 45000 | 1.4687          | 22.9793 | 49.8367 |


### Framework versions

- Transformers 4.22.1
- Pytorch 1.12.1
- Datasets 2.5.1
- Tokenizers 0.11.0