din0s commited on
Commit
ed76372
·
1 Parent(s): b268638

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +115 -0
README.md ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - ccmatrix
7
+ metrics:
8
+ - bleu
9
+ model-index:
10
+ - name: t5-base-finetuned-it-to-en
11
+ results:
12
+ - task:
13
+ name: Sequence-to-sequence Language Modeling
14
+ type: text2text-generation
15
+ dataset:
16
+ name: ccmatrix
17
+ type: ccmatrix
18
+ config: en-it
19
+ split: train[3000:12000]
20
+ args: en-it
21
+ metrics:
22
+ - name: Bleu
23
+ type: bleu
24
+ value: 26.0557
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # t5-base-finetuned-it-to-en
31
+
32
+ This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the ccmatrix dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 1.7418
35
+ - Bleu: 26.0557
36
+ - Gen Len: 25.6033
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 2e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 40
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
67
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
68
+ | No log | 1.0 | 282 | 2.0555 | 16.8117 | 26.9573 |
69
+ | 2.3228 | 2.0 | 564 | 1.9791 | 18.207 | 26.754 |
70
+ | 2.3228 | 3.0 | 846 | 1.9340 | 19.2206 | 26.6513 |
71
+ | 2.104 | 4.0 | 1128 | 1.8999 | 20.0802 | 26.5473 |
72
+ | 2.104 | 5.0 | 1410 | 1.8741 | 20.9222 | 26.4633 |
73
+ | 1.9952 | 6.0 | 1692 | 1.8511 | 21.3 | 26.4547 |
74
+ | 1.9952 | 7.0 | 1974 | 1.8361 | 21.9444 | 26.5227 |
75
+ | 1.9032 | 8.0 | 2256 | 1.8191 | 22.224 | 26.168 |
76
+ | 1.8342 | 9.0 | 2538 | 1.8074 | 22.7097 | 26.1573 |
77
+ | 1.8342 | 10.0 | 2820 | 1.7972 | 23.0299 | 26.2373 |
78
+ | 1.7718 | 11.0 | 3102 | 1.7898 | 23.5173 | 26.0447 |
79
+ | 1.7718 | 12.0 | 3384 | 1.7833 | 23.7157 | 26.0073 |
80
+ | 1.7268 | 13.0 | 3666 | 1.7785 | 23.8523 | 25.742 |
81
+ | 1.7268 | 14.0 | 3948 | 1.7725 | 23.979 | 25.88 |
82
+ | 1.6822 | 15.0 | 4230 | 1.7686 | 24.2126 | 25.8347 |
83
+ | 1.6386 | 16.0 | 4512 | 1.7639 | 24.4612 | 25.786 |
84
+ | 1.6386 | 17.0 | 4794 | 1.7605 | 24.6716 | 25.828 |
85
+ | 1.6047 | 18.0 | 5076 | 1.7549 | 24.9392 | 25.6493 |
86
+ | 1.6047 | 19.0 | 5358 | 1.7548 | 24.8965 | 25.6527 |
87
+ | 1.5778 | 20.0 | 5640 | 1.7537 | 24.9908 | 25.7827 |
88
+ | 1.5778 | 21.0 | 5922 | 1.7498 | 25.1397 | 25.6707 |
89
+ | 1.5413 | 22.0 | 6204 | 1.7472 | 25.2764 | 25.7373 |
90
+ | 1.5413 | 23.0 | 6486 | 1.7468 | 25.3103 | 25.6927 |
91
+ | 1.5249 | 24.0 | 6768 | 1.7471 | 25.3128 | 25.698 |
92
+ | 1.5052 | 25.0 | 7050 | 1.7449 | 25.4046 | 25.6813 |
93
+ | 1.5052 | 26.0 | 7332 | 1.7444 | 25.5513 | 25.7833 |
94
+ | 1.4825 | 27.0 | 7614 | 1.7448 | 25.4756 | 25.632 |
95
+ | 1.4825 | 28.0 | 7896 | 1.7432 | 25.6046 | 25.658 |
96
+ | 1.4665 | 29.0 | 8178 | 1.7422 | 25.6138 | 25.6907 |
97
+ | 1.4665 | 30.0 | 8460 | 1.7420 | 25.7196 | 25.7 |
98
+ | 1.4508 | 31.0 | 8742 | 1.7420 | 25.8684 | 25.618 |
99
+ | 1.4394 | 32.0 | 9024 | 1.7420 | 25.8188 | 25.6007 |
100
+ | 1.4394 | 33.0 | 9306 | 1.7417 | 25.9295 | 25.6113 |
101
+ | 1.4318 | 34.0 | 9588 | 1.7421 | 25.9842 | 25.614 |
102
+ | 1.4318 | 35.0 | 9870 | 1.7408 | 26.1045 | 25.5933 |
103
+ | 1.4244 | 36.0 | 10152 | 1.7409 | 26.0496 | 25.6327 |
104
+ | 1.4244 | 37.0 | 10434 | 1.7417 | 26.0595 | 25.6347 |
105
+ | 1.4139 | 38.0 | 10716 | 1.7420 | 26.0515 | 25.6047 |
106
+ | 1.4139 | 39.0 | 10998 | 1.7417 | 26.0727 | 25.616 |
107
+ | 1.4135 | 40.0 | 11280 | 1.7418 | 26.0557 | 25.6033 |
108
+
109
+
110
+ ### Framework versions
111
+
112
+ - Transformers 4.22.1
113
+ - Pytorch 1.12.1
114
+ - Datasets 2.5.1
115
+ - Tokenizers 0.11.0