update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- ccmatrix
|
7 |
+
metrics:
|
8 |
+
- bleu
|
9 |
+
model-index:
|
10 |
+
- name: t5-base-finetuned-it-to-en
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Sequence-to-sequence Language Modeling
|
14 |
+
type: text2text-generation
|
15 |
+
dataset:
|
16 |
+
name: ccmatrix
|
17 |
+
type: ccmatrix
|
18 |
+
config: en-it
|
19 |
+
split: train[3000:12000]
|
20 |
+
args: en-it
|
21 |
+
metrics:
|
22 |
+
- name: Bleu
|
23 |
+
type: bleu
|
24 |
+
value: 26.0557
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# t5-base-finetuned-it-to-en
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the ccmatrix dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 1.7418
|
35 |
+
- Bleu: 26.0557
|
36 |
+
- Gen Len: 25.6033
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 2e-05
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 40
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|
67 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
|
68 |
+
| No log | 1.0 | 282 | 2.0555 | 16.8117 | 26.9573 |
|
69 |
+
| 2.3228 | 2.0 | 564 | 1.9791 | 18.207 | 26.754 |
|
70 |
+
| 2.3228 | 3.0 | 846 | 1.9340 | 19.2206 | 26.6513 |
|
71 |
+
| 2.104 | 4.0 | 1128 | 1.8999 | 20.0802 | 26.5473 |
|
72 |
+
| 2.104 | 5.0 | 1410 | 1.8741 | 20.9222 | 26.4633 |
|
73 |
+
| 1.9952 | 6.0 | 1692 | 1.8511 | 21.3 | 26.4547 |
|
74 |
+
| 1.9952 | 7.0 | 1974 | 1.8361 | 21.9444 | 26.5227 |
|
75 |
+
| 1.9032 | 8.0 | 2256 | 1.8191 | 22.224 | 26.168 |
|
76 |
+
| 1.8342 | 9.0 | 2538 | 1.8074 | 22.7097 | 26.1573 |
|
77 |
+
| 1.8342 | 10.0 | 2820 | 1.7972 | 23.0299 | 26.2373 |
|
78 |
+
| 1.7718 | 11.0 | 3102 | 1.7898 | 23.5173 | 26.0447 |
|
79 |
+
| 1.7718 | 12.0 | 3384 | 1.7833 | 23.7157 | 26.0073 |
|
80 |
+
| 1.7268 | 13.0 | 3666 | 1.7785 | 23.8523 | 25.742 |
|
81 |
+
| 1.7268 | 14.0 | 3948 | 1.7725 | 23.979 | 25.88 |
|
82 |
+
| 1.6822 | 15.0 | 4230 | 1.7686 | 24.2126 | 25.8347 |
|
83 |
+
| 1.6386 | 16.0 | 4512 | 1.7639 | 24.4612 | 25.786 |
|
84 |
+
| 1.6386 | 17.0 | 4794 | 1.7605 | 24.6716 | 25.828 |
|
85 |
+
| 1.6047 | 18.0 | 5076 | 1.7549 | 24.9392 | 25.6493 |
|
86 |
+
| 1.6047 | 19.0 | 5358 | 1.7548 | 24.8965 | 25.6527 |
|
87 |
+
| 1.5778 | 20.0 | 5640 | 1.7537 | 24.9908 | 25.7827 |
|
88 |
+
| 1.5778 | 21.0 | 5922 | 1.7498 | 25.1397 | 25.6707 |
|
89 |
+
| 1.5413 | 22.0 | 6204 | 1.7472 | 25.2764 | 25.7373 |
|
90 |
+
| 1.5413 | 23.0 | 6486 | 1.7468 | 25.3103 | 25.6927 |
|
91 |
+
| 1.5249 | 24.0 | 6768 | 1.7471 | 25.3128 | 25.698 |
|
92 |
+
| 1.5052 | 25.0 | 7050 | 1.7449 | 25.4046 | 25.6813 |
|
93 |
+
| 1.5052 | 26.0 | 7332 | 1.7444 | 25.5513 | 25.7833 |
|
94 |
+
| 1.4825 | 27.0 | 7614 | 1.7448 | 25.4756 | 25.632 |
|
95 |
+
| 1.4825 | 28.0 | 7896 | 1.7432 | 25.6046 | 25.658 |
|
96 |
+
| 1.4665 | 29.0 | 8178 | 1.7422 | 25.6138 | 25.6907 |
|
97 |
+
| 1.4665 | 30.0 | 8460 | 1.7420 | 25.7196 | 25.7 |
|
98 |
+
| 1.4508 | 31.0 | 8742 | 1.7420 | 25.8684 | 25.618 |
|
99 |
+
| 1.4394 | 32.0 | 9024 | 1.7420 | 25.8188 | 25.6007 |
|
100 |
+
| 1.4394 | 33.0 | 9306 | 1.7417 | 25.9295 | 25.6113 |
|
101 |
+
| 1.4318 | 34.0 | 9588 | 1.7421 | 25.9842 | 25.614 |
|
102 |
+
| 1.4318 | 35.0 | 9870 | 1.7408 | 26.1045 | 25.5933 |
|
103 |
+
| 1.4244 | 36.0 | 10152 | 1.7409 | 26.0496 | 25.6327 |
|
104 |
+
| 1.4244 | 37.0 | 10434 | 1.7417 | 26.0595 | 25.6347 |
|
105 |
+
| 1.4139 | 38.0 | 10716 | 1.7420 | 26.0515 | 25.6047 |
|
106 |
+
| 1.4139 | 39.0 | 10998 | 1.7417 | 26.0727 | 25.616 |
|
107 |
+
| 1.4135 | 40.0 | 11280 | 1.7418 | 26.0557 | 25.6033 |
|
108 |
+
|
109 |
+
|
110 |
+
### Framework versions
|
111 |
+
|
112 |
+
- Transformers 4.22.1
|
113 |
+
- Pytorch 1.12.1
|
114 |
+
- Datasets 2.5.1
|
115 |
+
- Tokenizers 0.11.0
|