update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- ccmatrix
|
6 |
+
metrics:
|
7 |
+
- bleu
|
8 |
+
model-index:
|
9 |
+
- name: t5-small_de-finetuned-en-to-it
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Sequence-to-sequence Language Modeling
|
13 |
+
type: text2text-generation
|
14 |
+
dataset:
|
15 |
+
name: ccmatrix
|
16 |
+
type: ccmatrix
|
17 |
+
config: en-it
|
18 |
+
split: train[3000:12000]
|
19 |
+
args: en-it
|
20 |
+
metrics:
|
21 |
+
- name: Bleu
|
22 |
+
type: bleu
|
23 |
+
value: 6.7338
|
24 |
+
---
|
25 |
+
|
26 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
27 |
+
should probably proofread and complete it, then remove this comment. -->
|
28 |
+
|
29 |
+
# t5-small_de-finetuned-en-to-it
|
30 |
+
|
31 |
+
This model is a fine-tuned version of [din0s/t5-small-finetuned-en-to-de](https://huggingface.co/din0s/t5-small-finetuned-en-to-de) on the ccmatrix dataset.
|
32 |
+
It achieves the following results on the evaluation set:
|
33 |
+
- Loss: 2.3480
|
34 |
+
- Bleu: 6.7338
|
35 |
+
- Gen Len: 61.3273
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 2e-05
|
55 |
+
- train_batch_size: 96
|
56 |
+
- eval_batch_size: 96
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 40
|
61 |
+
- mixed_precision_training: Native AMP
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
|
67 |
+
| No log | 1.0 | 94 | 3.1064 | 2.9057 | 47.5067 |
|
68 |
+
| No log | 2.0 | 188 | 2.9769 | 2.7484 | 76.9273 |
|
69 |
+
| No log | 3.0 | 282 | 2.9015 | 3.0624 | 79.8873 |
|
70 |
+
| No log | 4.0 | 376 | 2.8444 | 3.2959 | 78.276 |
|
71 |
+
| No log | 5.0 | 470 | 2.7989 | 3.6694 | 74.6013 |
|
72 |
+
| 3.3505 | 6.0 | 564 | 2.7564 | 3.8098 | 74.3247 |
|
73 |
+
| 3.3505 | 7.0 | 658 | 2.7212 | 3.9596 | 72.554 |
|
74 |
+
| 3.3505 | 8.0 | 752 | 2.6886 | 4.2231 | 70.7673 |
|
75 |
+
| 3.3505 | 9.0 | 846 | 2.6572 | 4.1466 | 72.0113 |
|
76 |
+
| 3.3505 | 10.0 | 940 | 2.6294 | 4.2696 | 71.1647 |
|
77 |
+
| 3.0254 | 11.0 | 1034 | 2.6064 | 4.6375 | 67.7707 |
|
78 |
+
| 3.0254 | 12.0 | 1128 | 2.5838 | 4.7208 | 68.6707 |
|
79 |
+
| 3.0254 | 13.0 | 1222 | 2.5614 | 4.9191 | 68.5767 |
|
80 |
+
| 3.0254 | 14.0 | 1316 | 2.5427 | 4.9837 | 66.3867 |
|
81 |
+
| 3.0254 | 15.0 | 1410 | 2.5241 | 5.1011 | 66.7667 |
|
82 |
+
| 2.8789 | 16.0 | 1504 | 2.5093 | 5.283 | 64.944 |
|
83 |
+
| 2.8789 | 17.0 | 1598 | 2.4919 | 5.3205 | 65.738 |
|
84 |
+
| 2.8789 | 18.0 | 1692 | 2.4788 | 5.3046 | 65.3207 |
|
85 |
+
| 2.8789 | 19.0 | 1786 | 2.4651 | 5.5282 | 64.9407 |
|
86 |
+
| 2.8789 | 20.0 | 1880 | 2.4532 | 5.6745 | 63.0873 |
|
87 |
+
| 2.8789 | 21.0 | 1974 | 2.4419 | 5.7073 | 63.4973 |
|
88 |
+
| 2.7782 | 22.0 | 2068 | 2.4308 | 5.8513 | 62.8813 |
|
89 |
+
| 2.7782 | 23.0 | 2162 | 2.4209 | 5.8267 | 64.1033 |
|
90 |
+
| 2.7782 | 24.0 | 2256 | 2.4124 | 5.8534 | 64.2993 |
|
91 |
+
| 2.7782 | 25.0 | 2350 | 2.4037 | 6.0406 | 63.8313 |
|
92 |
+
| 2.7782 | 26.0 | 2444 | 2.3964 | 6.1517 | 63.4213 |
|
93 |
+
| 2.7116 | 27.0 | 2538 | 2.3897 | 6.2175 | 63.0573 |
|
94 |
+
| 2.7116 | 28.0 | 2632 | 2.3836 | 6.2551 | 62.876 |
|
95 |
+
| 2.7116 | 29.0 | 2726 | 2.3777 | 6.4412 | 62.4167 |
|
96 |
+
| 2.7116 | 30.0 | 2820 | 2.3717 | 6.4604 | 62.1087 |
|
97 |
+
| 2.7116 | 31.0 | 2914 | 2.3673 | 6.5471 | 62.1373 |
|
98 |
+
| 2.6662 | 32.0 | 3008 | 2.3634 | 6.5296 | 62.2533 |
|
99 |
+
| 2.6662 | 33.0 | 3102 | 2.3596 | 6.6623 | 61.276 |
|
100 |
+
| 2.6662 | 34.0 | 3196 | 2.3564 | 6.6591 | 61.392 |
|
101 |
+
| 2.6662 | 35.0 | 3290 | 2.3539 | 6.7201 | 61.0827 |
|
102 |
+
| 2.6662 | 36.0 | 3384 | 2.3516 | 6.675 | 61.3173 |
|
103 |
+
| 2.6662 | 37.0 | 3478 | 2.3500 | 6.6894 | 61.3507 |
|
104 |
+
| 2.6411 | 38.0 | 3572 | 2.3488 | 6.6539 | 61.5253 |
|
105 |
+
| 2.6411 | 39.0 | 3666 | 2.3482 | 6.7135 | 61.3733 |
|
106 |
+
| 2.6411 | 40.0 | 3760 | 2.3480 | 6.7338 | 61.3273 |
|
107 |
+
|
108 |
+
|
109 |
+
### Framework versions
|
110 |
+
|
111 |
+
- Transformers 4.22.1
|
112 |
+
- Pytorch 1.12.1
|
113 |
+
- Datasets 2.5.1
|
114 |
+
- Tokenizers 0.11.0
|