File size: 4,484 Bytes
779845c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- ccmatrix
metrics:
- bleu
model-index:
- name: t5-small-finetuned-en-to-it-b32
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: ccmatrix
      type: ccmatrix
      config: en-it
      split: train[3000:12000]
      args: en-it
    metrics:
    - name: Bleu
      type: bleu
      value: 9.6816
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-en-to-it-b32

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the ccmatrix dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1496
- Bleu: 9.6816
- Gen Len: 56.5347

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu   | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|
| No log        | 1.0   | 282   | 2.9409          | 2.6764 | 69.2487 |
| 3.3809        | 2.0   | 564   | 2.8277          | 2.4974 | 87.428  |
| 3.3809        | 3.0   | 846   | 2.7483          | 2.6851 | 89.7887 |
| 3.1255        | 4.0   | 1128  | 2.6831          | 3.1801 | 85.6927 |
| 3.1255        | 5.0   | 1410  | 2.6293          | 3.6949 | 79.9467 |
| 2.9965        | 6.0   | 1692  | 2.5809          | 4.0149 | 76.852  |
| 2.9965        | 7.0   | 1974  | 2.5403          | 4.3463 | 74.6487 |
| 2.9002        | 8.0   | 2256  | 2.5033          | 4.838  | 72.6053 |
| 2.8229        | 9.0   | 2538  | 2.4694          | 5.2829 | 67.984  |
| 2.8229        | 10.0  | 2820  | 2.4421          | 5.4964 | 68.986  |
| 2.76          | 11.0  | 3102  | 2.4135          | 5.8118 | 66.528  |
| 2.76          | 12.0  | 3384  | 2.3897          | 6.1966 | 65.052  |
| 2.7051        | 13.0  | 3666  | 2.3667          | 6.452  | 64.2273 |
| 2.7051        | 14.0  | 3948  | 2.3465          | 6.6428 | 63.516  |
| 2.6568        | 15.0  | 4230  | 2.3265          | 6.9467 | 61.8673 |
| 2.6183        | 16.0  | 4512  | 2.3101          | 7.2029 | 60.7393 |
| 2.6183        | 17.0  | 4794  | 2.2954          | 7.4982 | 60.0327 |
| 2.5757        | 18.0  | 5076  | 2.2799          | 7.7555 | 59.968  |
| 2.5757        | 19.0  | 5358  | 2.2660          | 7.8406 | 60.0307 |
| 2.5534        | 20.0  | 5640  | 2.2558          | 8.0679 | 59.0793 |
| 2.5534        | 21.0  | 5922  | 2.2426          | 8.3325 | 58.5367 |
| 2.5159        | 22.0  | 6204  | 2.2324          | 8.3538 | 58.6893 |
| 2.5159        | 23.0  | 6486  | 2.2217          | 8.5867 | 57.7627 |
| 2.4983        | 24.0  | 6768  | 2.2135          | 8.8324 | 56.7367 |
| 2.4791        | 25.0  | 7050  | 2.2052          | 8.8113 | 57.4373 |
| 2.4791        | 26.0  | 7332  | 2.1981          | 9.0909 | 57.0173 |
| 2.4529        | 27.0  | 7614  | 2.1908          | 9.0056 | 57.802  |
| 2.4529        | 28.0  | 7896  | 2.1856          | 9.2696 | 56.9773 |
| 2.4395        | 29.0  | 8178  | 2.1780          | 9.2824 | 57.0007 |
| 2.4395        | 30.0  | 8460  | 2.1722          | 9.2106 | 56.9893 |
| 2.4277        | 31.0  | 8742  | 2.1685          | 9.4668 | 56.406  |
| 2.4181        | 32.0  | 9024  | 2.1646          | 9.4992 | 56.2327 |
| 2.4181        | 33.0  | 9306  | 2.1616          | 9.5054 | 56.3033 |
| 2.4071        | 34.0  | 9588  | 2.1578          | 9.5093 | 56.548  |
| 2.4071        | 35.0  | 9870  | 2.1554          | 9.5227 | 56.7807 |
| 2.3991        | 36.0  | 10152 | 2.1532          | 9.5762 | 56.756  |
| 2.3991        | 37.0  | 10434 | 2.1518          | 9.6659 | 56.5913 |
| 2.3955        | 38.0  | 10716 | 2.1506          | 9.7199 | 56.5753 |
| 2.3955        | 39.0  | 10998 | 2.1498          | 9.6715 | 56.558  |
| 2.3913        | 40.0  | 11280 | 2.1496          | 9.6816 | 56.5347 |


### Framework versions

- Transformers 4.22.1
- Pytorch 1.12.1
- Datasets 2.5.1
- Tokenizers 0.11.0