File size: 4,229 Bytes
6c0f2ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: t5-small-finetuned-en-to-it-lrs-back
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-en-to-it-lrs-back

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7887
- Bleu: 15.4528
- Gen Len: 52.516

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu    | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 2.8637        | 1.0   | 1125  | 2.7212          | 3.496   | 82.846  |
| 2.6665        | 2.0   | 2250  | 2.5507          | 5.4897  | 65.4087 |
| 2.5307        | 3.0   | 3375  | 2.4286          | 6.688   | 61.9687 |
| 2.4064        | 4.0   | 4500  | 2.3431          | 7.6166  | 59.5613 |
| 2.3369        | 5.0   | 5625  | 2.2779          | 8.4755  | 57.776  |
| 2.284         | 6.0   | 6750  | 2.2202          | 9.0471  | 57.1227 |
| 2.2358        | 7.0   | 7875  | 2.1728          | 9.7222  | 55.9393 |
| 2.1747        | 8.0   | 9000  | 2.1357          | 10.4908 | 54.9073 |
| 2.1555        | 9.0   | 10125 | 2.1012          | 11.0378 | 54.292  |
| 2.1215        | 10.0  | 11250 | 2.0715          | 11.2204 | 54.546  |
| 2.0882        | 11.0  | 12375 | 2.0448          | 11.6557 | 54.1687 |
| 2.0544        | 12.0  | 13500 | 2.0193          | 12.0521 | 53.604  |
| 2.0355        | 13.0  | 14625 | 1.9959          | 12.2297 | 53.3893 |
| 2.0236        | 14.0  | 15750 | 1.9755          | 12.4706 | 53.3327 |
| 1.9974        | 15.0  | 16875 | 1.9555          | 12.59   | 53.4507 |
| 1.983         | 16.0  | 18000 | 1.9400          | 12.8305 | 53.1807 |
| 1.9615        | 17.0  | 19125 | 1.9236          | 13.0549 | 53.128  |
| 1.9519        | 18.0  | 20250 | 1.9111          | 13.1942 | 53.2953 |
| 1.9408        | 19.0  | 21375 | 1.8977          | 13.3979 | 53.332  |
| 1.9203        | 20.0  | 22500 | 1.8862          | 13.5626 | 52.73   |
| 1.9134        | 21.0  | 23625 | 1.8749          | 13.8549 | 52.904  |
| 1.8981        | 22.0  | 24750 | 1.8638          | 13.9347 | 53.2787 |
| 1.8911        | 23.0  | 25875 | 1.8557          | 14.1628 | 52.946  |
| 1.8859        | 24.0  | 27000 | 1.8471          | 14.2514 | 52.744  |
| 1.8692        | 25.0  | 28125 | 1.8406          | 14.4957 | 52.9267 |
| 1.8733        | 26.0  | 29250 | 1.8324          | 14.5489 | 53.112  |
| 1.8602        | 27.0  | 30375 | 1.8268          | 14.6941 | 52.882  |
| 1.8547        | 28.0  | 31500 | 1.8202          | 14.9101 | 52.948  |
| 1.8478        | 29.0  | 32625 | 1.8151          | 14.9498 | 52.8967 |
| 1.8485        | 30.0  | 33750 | 1.8102          | 15.0763 | 52.8587 |
| 1.8401        | 31.0  | 34875 | 1.8065          | 15.1604 | 52.8513 |
| 1.8307        | 32.0  | 36000 | 1.8023          | 15.1404 | 52.6533 |
| 1.8275        | 33.0  | 37125 | 1.7994          | 15.1813 | 52.738  |
| 1.8233        | 34.0  | 38250 | 1.7964          | 15.3185 | 52.7033 |
| 1.8238        | 35.0  | 39375 | 1.7939          | 15.4693 | 52.6433 |
| 1.8253        | 36.0  | 40500 | 1.7926          | 15.4467 | 52.44   |
| 1.8169        | 37.0  | 41625 | 1.7908          | 15.4167 | 52.5907 |
| 1.8182        | 38.0  | 42750 | 1.7899          | 15.4595 | 52.5433 |
| 1.8161        | 39.0  | 43875 | 1.7890          | 15.4411 | 52.5007 |
| 1.8169        | 40.0  | 45000 | 1.7887          | 15.4528 | 52.516  |


### Framework versions

- Transformers 4.22.1
- Pytorch 1.12.1
- Datasets 2.5.1
- Tokenizers 0.11.0