--- tags: - generated_from_trainer datasets: - ccmatrix metrics: - bleu model-index: - name: t5-small_fr-finetuned-en-to-it results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: ccmatrix type: ccmatrix config: en-it split: train[3000:12000] args: en-it metrics: - name: Bleu type: bleu value: 7.4222 --- # t5-small_fr-finetuned-en-to-it This model is a fine-tuned version of [din0s/t5-small-finetuned-en-to-fr](https://huggingface.co/din0s/t5-small-finetuned-en-to-fr) on the ccmatrix dataset. It achieves the following results on the evaluation set: - Loss: 2.3225 - Bleu: 7.4222 - Gen Len: 59.1127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 94 | 3.0406 | 3.2546 | 52.6127 | | No log | 2.0 | 188 | 2.9278 | 3.1206 | 62.774 | | No log | 3.0 | 282 | 2.8573 | 3.4206 | 63.6707 | | No log | 4.0 | 376 | 2.8030 | 3.4847 | 66.408 | | No log | 5.0 | 470 | 2.7602 | 3.8933 | 64.362 | | 3.2982 | 6.0 | 564 | 2.7185 | 3.9298 | 66.058 | | 3.2982 | 7.0 | 658 | 2.6842 | 4.0344 | 65.5773 | | 3.2982 | 8.0 | 752 | 2.6536 | 4.3243 | 65.0047 | | 3.2982 | 9.0 | 846 | 2.6233 | 4.5078 | 64.5813 | | 3.2982 | 10.0 | 940 | 2.5966 | 4.6657 | 63.654 | | 2.9837 | 11.0 | 1034 | 2.5743 | 4.7664 | 63.326 | | 2.9837 | 12.0 | 1128 | 2.5526 | 4.9535 | 62.7327 | | 2.9837 | 13.0 | 1222 | 2.5303 | 5.1386 | 63.5887 | | 2.9837 | 14.0 | 1316 | 2.5122 | 5.1037 | 64.1667 | | 2.9837 | 15.0 | 1410 | 2.4937 | 5.3304 | 63.116 | | 2.8416 | 16.0 | 1504 | 2.4797 | 5.5006 | 61.4953 | | 2.8416 | 17.0 | 1598 | 2.4627 | 5.5892 | 62.01 | | 2.8416 | 18.0 | 1692 | 2.4497 | 5.8497 | 61.42 | | 2.8416 | 19.0 | 1786 | 2.4372 | 6.0074 | 61.1587 | | 2.8416 | 20.0 | 1880 | 2.4256 | 6.1464 | 60.522 | | 2.8416 | 21.0 | 1974 | 2.4148 | 6.3117 | 59.5567 | | 2.7428 | 22.0 | 2068 | 2.4039 | 6.4626 | 59.532 | | 2.7428 | 23.0 | 2162 | 2.3939 | 6.5287 | 60.2307 | | 2.7428 | 24.0 | 2256 | 2.3857 | 6.6093 | 60.22 | | 2.7428 | 25.0 | 2350 | 2.3772 | 6.8004 | 59.396 | | 2.7428 | 26.0 | 2444 | 2.3703 | 6.9433 | 59.5027 | | 2.6779 | 27.0 | 2538 | 2.3631 | 7.0153 | 59.1433 | | 2.6779 | 28.0 | 2632 | 2.3575 | 7.1783 | 58.9793 | | 2.6779 | 29.0 | 2726 | 2.3514 | 7.1639 | 59.362 | | 2.6779 | 30.0 | 2820 | 2.3457 | 7.2176 | 58.9927 | | 2.6779 | 31.0 | 2914 | 2.3411 | 7.2599 | 59.1433 | | 2.6335 | 32.0 | 3008 | 2.3374 | 7.284 | 59.1787 | | 2.6335 | 33.0 | 3102 | 2.3339 | 7.3678 | 59.07 | | 2.6335 | 34.0 | 3196 | 2.3307 | 7.3364 | 58.9813 | | 2.6335 | 35.0 | 3290 | 2.3281 | 7.3318 | 58.96 | | 2.6335 | 36.0 | 3384 | 2.3259 | 7.394 | 59.0787 | | 2.6335 | 37.0 | 3478 | 2.3245 | 7.4133 | 59.0393 | | 2.609 | 38.0 | 3572 | 2.3232 | 7.383 | 59.1887 | | 2.609 | 39.0 | 3666 | 2.3227 | 7.4105 | 59.1227 | | 2.609 | 40.0 | 3760 | 2.3225 | 7.4222 | 59.1127 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.11.0