Add README with model description
Browse files
README.md
CHANGED
|
@@ -1,15 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# BERT IMDB Sentiment Classifier
|
| 2 |
|
| 3 |
This model is a fine-tuned version of `bert-base-uncased` on the IMDB movie reviews dataset.
|
| 4 |
|
| 5 |
## Task
|
|
|
|
| 6 |
Binary Sentiment Classification:
|
| 7 |
- `0` → Negative
|
| 8 |
- `1` → Positive
|
| 9 |
|
| 10 |
## Usage
|
|
|
|
| 11 |
```python
|
| 12 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 13 |
|
| 14 |
model = AutoModelForSequenceClassification.from_pretrained("dina1/bert-imdb-sentiment")
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained("dina1/bert-imdb-sentiment")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
datasets:
|
| 4 |
+
- imdb
|
| 5 |
+
metrics:
|
| 6 |
+
- accuracy
|
| 7 |
+
model-index:
|
| 8 |
+
- name: BERT IMDB Sentiment Classifier
|
| 9 |
+
results:
|
| 10 |
+
- task:
|
| 11 |
+
type: text-classification
|
| 12 |
+
name: Sentiment Analysis
|
| 13 |
+
dataset:
|
| 14 |
+
name: IMDB
|
| 15 |
+
type: imdb
|
| 16 |
+
metrics:
|
| 17 |
+
- type: accuracy
|
| 18 |
+
value: 0.93
|
| 19 |
+
tags:
|
| 20 |
+
- sentiment
|
| 21 |
+
- imdb
|
| 22 |
+
- text-classification
|
| 23 |
+
- bert
|
| 24 |
+
license: apache-2.0
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
# BERT IMDB Sentiment Classifier
|
| 28 |
|
| 29 |
This model is a fine-tuned version of `bert-base-uncased` on the IMDB movie reviews dataset.
|
| 30 |
|
| 31 |
## Task
|
| 32 |
+
|
| 33 |
Binary Sentiment Classification:
|
| 34 |
- `0` → Negative
|
| 35 |
- `1` → Positive
|
| 36 |
|
| 37 |
## Usage
|
| 38 |
+
|
| 39 |
```python
|
| 40 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 41 |
|
| 42 |
model = AutoModelForSequenceClassification.from_pretrained("dina1/bert-imdb-sentiment")
|
| 43 |
tokenizer = AutoTokenizer.from_pretrained("dina1/bert-imdb-sentiment")
|
| 44 |
+
|
| 45 |
+
text = "This movie was absolutely wonderful!"
|
| 46 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True)
|
| 47 |
+
outputs = model(**inputs)
|
| 48 |
+
|
| 49 |
+
predicted_class = outputs.logits.argmax().item()
|
| 50 |
+
print("Predicted Sentiment:", predicted_class)
|