Add README with model description
Browse files
README.md
CHANGED
@@ -1,15 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# BERT IMDB Sentiment Classifier
|
2 |
|
3 |
This model is a fine-tuned version of `bert-base-uncased` on the IMDB movie reviews dataset.
|
4 |
|
5 |
## Task
|
|
|
6 |
Binary Sentiment Classification:
|
7 |
- `0` → Negative
|
8 |
- `1` → Positive
|
9 |
|
10 |
## Usage
|
|
|
11 |
```python
|
12 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
13 |
|
14 |
model = AutoModelForSequenceClassification.from_pretrained("dina1/bert-imdb-sentiment")
|
15 |
tokenizer = AutoTokenizer.from_pretrained("dina1/bert-imdb-sentiment")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
datasets:
|
4 |
+
- imdb
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: BERT IMDB Sentiment Classifier
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: text-classification
|
12 |
+
name: Sentiment Analysis
|
13 |
+
dataset:
|
14 |
+
name: IMDB
|
15 |
+
type: imdb
|
16 |
+
metrics:
|
17 |
+
- type: accuracy
|
18 |
+
value: 0.93
|
19 |
+
tags:
|
20 |
+
- sentiment
|
21 |
+
- imdb
|
22 |
+
- text-classification
|
23 |
+
- bert
|
24 |
+
license: apache-2.0
|
25 |
+
---
|
26 |
+
|
27 |
# BERT IMDB Sentiment Classifier
|
28 |
|
29 |
This model is a fine-tuned version of `bert-base-uncased` on the IMDB movie reviews dataset.
|
30 |
|
31 |
## Task
|
32 |
+
|
33 |
Binary Sentiment Classification:
|
34 |
- `0` → Negative
|
35 |
- `1` → Positive
|
36 |
|
37 |
## Usage
|
38 |
+
|
39 |
```python
|
40 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
41 |
|
42 |
model = AutoModelForSequenceClassification.from_pretrained("dina1/bert-imdb-sentiment")
|
43 |
tokenizer = AutoTokenizer.from_pretrained("dina1/bert-imdb-sentiment")
|
44 |
+
|
45 |
+
text = "This movie was absolutely wonderful!"
|
46 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True)
|
47 |
+
outputs = model(**inputs)
|
48 |
+
|
49 |
+
predicted_class = outputs.logits.argmax().item()
|
50 |
+
print("Predicted Sentiment:", predicted_class)
|