--- language: en datasets: - imdb metrics: - accuracy model-index: - name: BERT IMDB Sentiment Classifier results: - task: type: text-classification name: Sentiment Analysis dataset: name: IMDB type: imdb metrics: - type: accuracy value: 0.93 tags: - sentiment - imdb - text-classification - bert license: apache-2.0 --- # BERT IMDB Sentiment Classifier This model is a fine-tuned version of `bert-base-uncased` on the IMDB movie reviews dataset. ## Task Binary Sentiment Classification: - `0` → Negative - `1` → Positive ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained("dina1/bert-imdb-sentiment") tokenizer = AutoTokenizer.from_pretrained("dina1/bert-imdb-sentiment") text = "This movie was absolutely wonderful!" inputs = tokenizer(text, return_tensors="pt", truncation=True) outputs = model(**inputs) predicted_class = outputs.logits.argmax().item() print("Predicted Sentiment:", predicted_class)